

 Jeff Murray’s Programming Shop, Inc.

www.jprog.com • 1215 Prytania Suite 235 • New Orleans, LA 70130 • Phone (504) 486-0702 • Fax (504) 529-9099

Using the cwFhirPath Language
Introduction and Documentation
October 25, 2022

Contents
Prerequisites .. 2

Introduction ... 2

The cwFhirPath language ... 3

cwFhirPath outputType ... 3

note freeFormText .. 3

column columnName { ... 3

column names with # .. 4

column names with # and forEachObj .. 4

found varName.. 4

When found is used in a column function .. 4

When found is used in a forEachObj function .. 4

} ... 5

findResult varName = pathToFhirResourceValue.. 5

Writing a path to a FHIR Resource value ... 5

All paths lead to a string value .. 5

The FHIR Resource Base Property ... 5

Properties with object values .. 5

Properties with array values .. 6

Using index to retrieve an array value .. 6

forEachObj funcName { ... 6

if booleanOperation { ... 6

Using if with varName.Found... 7

Using if with varName.StringValue and varName.StringValue.ToLower and ‘=’ 7

Using if with varName.StringValue and varName.StringValue.ToLower and

‘contains’... 7

2

www.jprog.com • 1215 Prytania Suite 235 • New Orleans, LA 70130 • Phone (504) 486-0702 • Fax (504) 529-9099

Using if with not.. 7

rows { .. 7

rowArrayPath pathToRowObjs .. 8

rowCwFhirPath filename.cwfp ... 8

Automatic .reference resource fetching in findResult paths ... 8

Prerequisites

To make sense of this document you will need general programming knowledge and an

understanding of the mechanics of the FHIR R4 API and the JSON format that FHIR

Resources take. Here are a couple of links where you can start:

https://www.hl7.org/fhir/resourcelist.html and https://www.json.org/json-en.html. You

will also need familiarity with the CAREWare PDI and its FHIR Data Source.

Documentation for these can be found here (this is the main link to the WIKI PDI FHIR

Datasource page).

Introduction

The cwFhirPath language is used by CAREWare FHIR Data Sources to find data in the

highly nested JSON format used by HL7’s FHIR R4 API and to format that data as PDI

CSV rows and columns. During the planning of the CAREWare FHIR Client, we

quickly realized that hardcoding the data extraction of PDI columns from FHIR JSON

Resources would be a build bottleneck, and tweaking differences across CAREWare’s

many installations could be tedious and costly. To avoid this issue we came up with the

cwFhirPath language to enable jProg staff, or others, to update PDI CSV table and row

specs without making a new build of CAREWare.

Masked behind cwFhirPath are a lot of complicated behind-the-scenes FHIR patterns like

fetching a ‘reference’ resource and scanning an array for the desired element and

unpackaging FHIR Bundles into rows and executing the PDI’s cs_1, cs_2 pattern when

multiple codes or coding systems are used. A nice byproduct of this language is that it

speeded up the internal development of the first RSR data pull that CAREWare is

distributed with. Using this language also provides better transparency in that the exact

path within FHIR resources is available to those who wish to check CAREWare’s FHIR

Datasource implementation.

This documentation is meant to be distributed in a cwFhirPathDocs.zip file with a

‘source’ and a ‘resource’ folder inside. Files in these folders are included to provide

example source files and example FHIR Resource JSON files that are referred to in this

documentation.

We recommend unzipping the documentation with its folder structure intact and using a

line numbered text editor like notepad++ to find files in the ‘source’ and ‘resource’

3

www.jprog.com • 1215 Prytania Suite 235 • New Orleans, LA 70130 • Phone (504) 486-0702 • Fax (504) 529-9099

folder. The following documentation refers to these files by name and references

example code locations with line numbers.

The example FHIR Resources like ‘EpicSandboxPatient.txt’ are actual responses

received from R4 queries to Epic’s public sandbox at https://fhir.epic.com/.

The example *.cwfp files are early proof-of-concept examples of how to approach

patterns when pathing through FHIR Resource JSON Objects and converting them to PDI

data rows; they are not an examples of what our final, tested cwFhirPath *.cwb pathing

will look like. Those examples will be in the CAREWare PDI FHIR Resource

Connector.

The cwFhirPath language

The cwFhirPath language has a handful of keywords that are described below. We were

able to keep the language small because its sole mission is to pluck data from FHIR R4

Resources for PDI columns. While that task is somewhat complicated, when boiled

down to its essence, the intersection of FHIR and PDI patterns results in a finite space.

Note that keywords, properties and data operations are case-sensitive, and all required

elements of a keyword must be on the same line, including the ‘{‘ if specified.

cwFhirPath outputType

The cwFhirPath keyword is required to be the first word on the first line, followed by a

space and then the type of output expected. There is only one type of output: ‘pdi’.

Example on line 1 of exp_client.cwfp:

note freeFormText

note is the place for hard coded comments that explain key points about the

source.

freeFormText must be on the same line.

Example on lines 3 and 4 of exp_client.cwfp:

column columnName {

column is a cwFhirPath function used to find a value in its FHIR JSON Resource.

columnName is the name of the PDI column you are finding within the FHIR

Resource.

{ signifies the opening block of code that finds the data for this column

4

www.jprog.com • 1215 Prytania Suite 235 • New Orleans, LA 70130 • Phone (504) 486-0702 • Fax (504) 529-9099

column names with #

In JSON formatted FHIR Resources, a single record can supply an array of codes and

coding systems for entities of the same type. The PDI CSV specification handles

multiple coding systems through a column name pattern that inserts a counter starting

with 1 into the column name. You can control where this counter is inserted by placing a

single # in the column name.

See example in ‘sources/exp_medication_from_bundle.cwfp’ on lines 147 and 161. See

PDI documentation for ‘exp_medication.csv’ for the definition of ‘mdc_cs_#’ and

‘mdc_cs_#_def_code’ in the example.

column names with # and forEachObj

It is possible to design forEachObj functions so that more than one JSON object in the

scanned array is ‘found’. If columnName does not have a ‘#’, then findResult will

always use the first object found from the forEachObj in its path. If columnName has a

‘#’, then every object found in the array will be sequenced using the PDI pattern at the

‘#’.

See example in ‘sources/exp_medication_from_bundle.cwfp’ on lines 151 and 165. In

this example, the forEachObj returns found for any JSON object in the array that has a

property named ‘system’ resulting in all the meds codes and coding systems in the

example array.

found varName

found is the end-goal of the column and forEachObj functions indicating at least

one value has been found.

varName holds a value from a previous findResult path

When found is used in a column function

When found is returned in a column function, the string value of the column is set to the

value held in the findResult variable varName and all further processing in the column

function is halted.

When found is used in a forEachObj function

When found is used in a forEachObj function, even though it looks like you are

returning the value held in the findResult variable varName, the forEachObj function

instead returns the object the forEachObj is evaluating, to be used in the rest of the

findResult path.

5

www.jprog.com • 1215 Prytania Suite 235 • New Orleans, LA 70130 • Phone (504) 486-0702 • Fax (504) 529-9099

}

} Ends its companion opening block of code. The example closing bracket

ending a column block started on line 97 is on line 119 in

‘source/exp_client.cwfp’

findResult varName = pathToFhirResourceValue

findResult attempts to find a value in a FHIR Resource, and if one is found, stores it in

varName as a string. If a value is not found, varName will return a zero-length string.

= signifies the result of pathToFhirResourceValue will be assigned to varName

pathToFhirResourceValue is a javascript-style ‘.’-delineated path that navigates

through the various keys, arrays of objects and referenced FHIR Resources and retrieves

a value. See ‘Writing a path to a FHIR Resource Value’ below.

See example on line 101 of ‘source/cw_client.cwfp’.

Writing a path to a FHIR Resource value

The findResult keyword provides a powerful way to navigate to values in the JSON

structures of a FHIR Resource.

All paths lead to a string value

findResult will convert any non-string value (like a JSON number) into a string value.

If for some reason your syntactically correct path is unable to find a value, the value will

be set to ‘’ (a zero length string). See the if keyword for how to apply Boolean logic to

findResult variables.

The FHIR Resource Base Property

The PDI’s FHIR Datasource will be configured to associate an R4 Resource Query with a

cwFhirPath source file that turns the FHIR Resource into PDI columns. The result stored

in varName will be what pathToFhirResourceValue finds on the right side of the ‘=’.

A successful FHIR Patient query will return a JSON structure like that in

‘resources/EpicSandboxPatient.txt’. A path starts with a base property of its FHIR

Resource. Sometimes the base property is the entire path. On line 116 in

‘sources/exp_client.cwfp’, the base property ‘birthDate’ has the string/value “1973-06-

03” stored with it on line 166 in ‘resources/EpicSandboxPatient.txt’.

Properties with object values

In some cases the value of a property is an object. When this is the case, a path can be

formed to a property in that object by placing a ‘.’ and then the name of the property. For

6

www.jprog.com • 1215 Prytania Suite 235 • New Orleans, LA 70130 • Phone (504) 486-0702 • Fax (504) 529-9099

example, if you were making a path to get the marital status of the patient, the path

‘maritalStatus.text’ would return the ‘Married’ string/value on line 196 of

‘resources/EpicSandboxPatient.txt’.

Properties with array values

In some cases the value of a property is an array. Since a single PDI column can only

contain one value, you will need to decide on a strategy for selecting the element you

want. The two methods are providing an index like ‘[0]’ or putting the name of a

forEachObj like ‘findOfficialName’.

Using index to retrieve an array value

cwFhirPath uses a zero-based index value enclosed in brackets to specify an element.

For example, the path name[0]given[0] on line 76 in ‘sources/exp_client.cwfp’ would

find the value “Us” on line 133 in ‘resources/EpicSandboxPatient.txt’. Notice that the

elements in the ‘name’ array are JSON objects and ‘given’ holds a JSON array of strings.

forEachObj funcName {

forEachObj is a function you create to find an element or elements in an array of JSON

objects; if found is invoked, the function will use the object in the rest of the path that

uses it. The forEachObj function must be declared in the file before it is used in a

findResult path.

funcName is the name you can use in your findResult path(s)

{ is the start of the function block.

For example, the forEachObj function named ‘findFirstOfficialName’ on line 6 in

‘sources/exp_client.cwfp’ looks for the property ‘use’ to see if its value is ‘official', and if

so uses the keyword found to indicate that this is the object to use in an array of objects.

An example of using ‘findFirstOfficialName’ to use the ‘given’ value of the found object

in a path can is on line 42. In the example ‘resources/EpicSandboxPatient.txt you can

follow the FHIR Patient resource path ‘name[findFirstOfficialName]family’. The

property ‘name’ on line 127 holds an array of three JSON objects, each containing a ‘use’

property with different values. You can see that the second JSON object on lines 136

through 143 is what ‘findFirstOfficialName’ would find, and its ‘family’ property on line

139 has a value ‘Lin’ in the property ‘lastName’ on line 42 of ‘sources/exp_client.cwfp’.

Note that if multiple objects in the array are found, the first found object will be used,

unless the column name has ‘#’ in it–see ‘column names with #’ in this documentation.

if booleanOperation {

if is a keyword you can use to see if a path was found and use boolean operators to

compare values. The cwFhirPath language does not use the ‘and’ or ‘or’ operators, nor

7

www.jprog.com • 1215 Prytania Suite 235 • New Orleans, LA 70130 • Phone (504) 486-0702 • Fax (504) 529-9099

does it use ‘else’, ‘(‘ or ‘)’. Operators ‘=’ and contains only will compare string values

and not can only be placed immediately after the if.

booleanOperation represents the ways you can apply logic to a findResult variable.

Using if with varName.Found

The varName ‘.Found’ property is set to true in a findResult variable if the last property

in the path was found. For example, on line 44 of ‘sources/exp_client.cwfp’, if the

findResult path finds a value then ‘codingsys.Found’ will be set to true and ‘if

codingsys.Found {‘ will execute the code inside its block. If the path did not find the

desired property, ‘codingsys.Found’ would be false and the code block between lines 45

and 47 would be skipped.

Using if with varName.StringValue and varName.StringValue.ToLower and ‘=’

There are cases where you need to check the value of a findResult variable before

executing a block of code. For example, on line 11 of ‘sources/exp_client.cwfp’ the

statement ‘if useType.StringValue.ToLower = 'official' {‘ the ‘.StringValue’ of variable

‘useType’ is converted to lowercase before checking if it equals the hardcoded string

‘official’.

Note that ‘.Found’, ‘.StringValue’, and ‘.StringValue.ToLower’ are the only available

properties that can be used with a findResult variable.

Using if with varName.StringValue and varName.StringValue.ToLower and

‘contains’

contains looks in a findResult variable and only returns true if the value contains a

substring. For example, on line 63 of ‘sources/exp_client.cwfp’ the statement ‘if

codingsys.StringValue.ToLower contains 'us-core-birthsex' {‘ the ‘.StringValue’ of

‘codingsys’ is converted to lowercase before checking if the value (in this case a URL)

contains the substring ‘us-core-birthsex’.

Using if with not

At the time this document was written, we have not yet found a need for not, but it can be

used to reverse the Boolean value produced by the rest of the if statement. The

placement of not can only be after the if and before the rest of the expression.

rows {

rows is a function to convert a FHIR Bundle into PDI rows by scanning the ‘entry’ array

and invoking the code in another *.cwfb file for each element in the array. The rows

function must be the only function in its own *.cwfb file, and it expects a FHIR Bundle

Resource type to be what its FHIR PDI Resource query returns. For example, on line 5

8

www.jprog.com • 1215 Prytania Suite 235 • New Orleans, LA 70130 • Phone (504) 486-0702 • Fax (504) 529-9099

of ‘medication_request_bundle.cwfp’, the rows function iterates through a FHIR Bundle

of MedicationRequest resource objects stored in the ‘entry’ array on line 11 of

‘EpicSandboxMedicationRequestBundle.txt’.

rowArrayPath pathToRowObjs

rowArrayPath

pathToRowObjs for a FHIR Bundle you will want this to be ‘entry’.

rowCwFhirPath filename.cwfp

rowCwFhirPath specifies which *.cwfp file to use to convert each element in

rowArrayPath. filename.cwfp is the name of the cwFhirPath source file that can make

PDI rows from elements in the FHIR Bundle ‘entry’ array. For example, in line 7 in

‘medicationOrders.cwfp’, the filename containing this source is ‘medicationOrder.cwfp’.

If you look at line 77 in ‘medicationOrder.cwfp’, you will see that the base property is

‘resource’ for all column functions in the file. If you look on line 12 of

‘EpicSandboxMedicationRequestBundle.txt’, you can see the element is not a

‘MedicationRequest’ itself but an entry object with a ‘resource’ property (line 20) that

contains a ‘MedicationRequest’.

Automatic .reference resource fetching in findResult paths

In line 77 in ‘medicationOrder.cwfp’ after the property ‘subject’, the ‘reference’ property

is used, followed by the ‘name’ property. On line 58 of

‘EpicSandboxMedicationRequestBundle.txt’, the ‘subject’ property is an object that

contains a ‘reference’ property (line 59) that rather than containing a Patient FHIR

Resource, it contains an R4 Patient resource relative path that can be used to get a Patient

resource like the one in ‘EpicSandboxPatient.txt’. cwFhirPath takes care of managing

this query lookup behind-the-scenes. The referenced object can then be used like ‘name’

is on line 77 in ‘medicationOrder.cwfp’ as if the ‘reference’ property did contain the

object itself.

