Table Of Contents

MODEL	PAGE	MODEL	PAGE
MINI-SCP	3	MR-50 Series 1	35
MINI-SCPE	5	MR-50 Series 2	37
SCP-1MB	7	MR-50 Series 3	39
SCP-E	9	MR-51E	41
SCP-MEM3	11	MR-52 Series 1	43
SCP-MEM7	13	MR-52 Series 2	45
EP-1501	15	MR-52 Series 3	47
EP-1501 PLUS	17	MR-62E	49
EP-1502	19	MR-16IN Series 1	51
EP-2500	21	MR-16IN Series 2	53
EP-4502	23	MR-16IN Series 3	55
LP-1501	25	MR-16OUT Series 1	57
LP-1501 PLUS	27	MR-16OUT Series 2	59
LP-1502	29	MR-16OUT Series 3	61
LP-2500	31	MUX-8	63
LP-4502	33	OptoHub	65

MR-sce not avatuad by

S1 - RS-232 Hardwired Address Dip Switch

Address	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
$\mathbf{0}$	Off	Off	Off	Off	Off	On	On	Off

DB-9 Wiring

S1 - Dialup Address Dip Switch

Address	1	2	3	4	5	6	7	8
1	On	Off	Off	Off	On	On	On	Off

Figure 2: RS-485 Sub-Panel Bus Termination

(Channel 2 Termination) $J 11$ en	- Ø	TR2+
	- D	TR2-
	- D	GND
(Channel 3 Termination)	\bigcirc	tr3+
	- D	tR3-
	- \varnothing	GND

The MINI-SCP has two distinct RS-485 sub-panel buses. Each bus needs to be terminated at both the beginning and ending points. J 11 is the termination jumper for the Channel 2 RS-485 Sub-Panel Bus. J 12 is the termination jumper for the Channel 3 RS-485 Sub-Panel Bus. (see Two Wire RS-485 Wiring diagram for sub-panel wiring information)

Explanation 1: Memory Backup Battery

If the MINI-SCP should experience a complete power loss, the 3 volt lithium memory backup battery provides power to the all database information during a power failure for up to 60 days. For optimum reliability, the memory backup battery should be replaced yearly using only a type BR2325 lithium battery or equivalent.
NOTE: When setting up or servicing the MINI-SCP, it is recommended to leave the battery bypass sleeve in place until all system testing is completed. By keeping the battery bypass sle eve in between the battery and the '+' post, you can be certain that the memory is being completely flushed during power cycles. Upon completion, be certain to remove the battery bypass sleeve and store it within the enclosure for future use.

The 10Base-T Network Interface Card (NIC) has been inork Interface Card Setup The
sotware and the MINI-SCPE. The NIC will require an IP Address, Subnet Mask and Gateway in order for the software to communicate with it. To program this information into the NNC, a MAC Address is required. Every NIC has a unique MAC Address which can be found
on the white tag that is attached to it. A sample of a MAC Address would be 00-20-4A-74-OF-7F and can be found under the model on the white tag that is attached to it. A sample of a MAC Address would be 00-20-4A-74-OF-7F and can
number of the NIC (CO-E1-11AA). Programming the NIC can be performed through one of three methods

Method One: RS2 Programmer (P/N: RS2-PROG-TOOL)

The RS2 Programmer comes with a cross-over cable which is used to connect the programmer to the MINI-SCPEs NIC. After connecting the progr
automatically launch.
Enter the NICS MAC Address into the MAC Address fields. Enter the desired IP Address, Gateway and Subnet Mask into the ir
respective fields. Select the appropriate SCP type and software apolication from their respective drop lists and thenclick the 'S respective fiedds. Select the appropriate SCP type and software application from their respective drop lists and then click the 'Set
Configuration' button. One of two messages will appear, 'Configuration set!' if the programming was successful or 'Panel timeout' if the
programming failed. programming failed.

Method Two: Access It!® Ultra SCPe IP Programmer
Access It|® Ultra installs a utilities folder which contains the SCPe IP Programmer. If the computer resides on the same subnet as the Access It!@ Ultra installs a utilities folderwhich contains the SCPe IP Programmer. If the computer resides on the same subnet as
NIC being programmed, you may programit while connected to the netwrk. From the start menu, click Start|Programs|Access It!
Ultra|Utilities|SCPe IP Programmer to run the SCP-E/MINI SCP-E Programmer utility.
Enter the NICS MAC Address into the MAC Address fields. Enter the desired IP Address, Gateway and Subnet Mask into the ir respective fields. Select the appropriate SCP type and software application from their respective drap lists and thenclick the 'Set
Configuration' button. One of two messages will appear, 'Configuration set!' if the programming was successful or 'Panel timeout' if the
programming failed.

Method Three: Manually

The manual ARP command is a tedious, but effective method in programming the NIC. This method should be used only as a last resort. If the computer resides on the same subnet as the NIC being programmed, you may program it while connected to the network.
From the start menu, click Start|Run followed by typing 'cmd' for NT 4.0, 2000 and XP or 'command' for 98 and Me. This will open a From the start menu, click Start|Run followed by typing 'cmd' for NT 4.0, 2000 and
Command Prompt window from which the following commands will be run from.

Command Prompt Window Portion		
Command	Variable Reference	General Command Information
arp -s xxx.xxx.xxx.xxx yy-yy-yy-yy-yy-yy<Enter>	$\begin{aligned} & x \times \mathrm{xx} \times . \times x \mathrm{x} . \mathrm{xxX}=\mathrm{IP} \text { Address } \\ & \mathrm{yy} \text {-yy-yy-yy-yy-yy = MAC Address } \end{aligned}$	Temporarily sets the IP Address.
telnet xxx.xxx.xxx.xxx 1<Enter>	xxx.xx.x.xxx.xxx $=1 \mathrm{P}$ Address	The telnet connection will fail, but the NIC will change its IP Address.
telnet xxx.xxx.xxx.xxx 9999	xxx.xxx.xxx.xxx = IP Address	Opens a telnet session for further programming.
Telnet Session Window Portion		
Command	Variable Reference	General Command Information
<Enter>		Enters the NICs Setup Mode.
0<Enter>		Selects option 0 Server configuration.
xxx<Enter>	$x \mathrm{xx}=$ First IP octet	Programs the NICs first IP octet.
xxx<Enter>	xxx = Second IP octet	Programs the NICs second IP octet.
xxx<Enter>	xxx $=$ Third $1 P$ octet	Programs the NICS third IP octet.
xxx<Enter>	x $\mathrm{xx}=$ Fourth IP octet	Programs the NICs fourth IP octet.
Y	$Y=Y$ Yes	Enables Gateway to be programmed.
xxx<Enter>	xxx = First Gateway octet	Programs the NIICs first Gateway octet.
xxx<Enter>	x $x \times$ = Second Gateway octet	Programs the NIIC second Gateway octet.
xxx<Enter>	xxx = Third Gateway octet	Programs the NICs third Gateway octet.
xxx<Enter>	$x \mathrm{xx}=$ Fourth Gateway octet	Programs the NICs fourth Gateway octet.
xx<Enter>	$\mathrm{xx}=$ Number of bits to mask (08) class C $24 / 8$ bits (255.255.255.000) (16) class B $16 / 16$ bits (255.255 .000 .000) (24) class A $8 / 24$ bits (255.000 .000 .000)	Programs the NICs Subnet Mask
<Enter>		Bypasses the 'Change telnet config password' option.
1<Enter>		Selects option 1 Channel 1 configuration.
38400<Enter>		Programs the Baudrate to 38,400 .
4C<Enter>		Programs the I/F Mode to 4 C .
02<Enter>		Programs the Flow to 02.
xxxxx<Enter>	$\begin{aligned} & x x x x x= \text { Network TCP port } \\ & \text { (03001) Default Access lt:(®) setting }\end{aligned}$ (14001) If running Access Itte Lite or Access It!e® UltraLite.	Programs the Port No to 03001 or 14001 , IMPORTANT NOTE: Only set the Port No to 14001, when running Access Itte Lite or Access it:@ UltraLite which require the Lantronix Redirector Software!
Co<Enter>		Programs the ConnectMode to CO .
<Enter>		Bypasses the first 'Remote IP Address' octet option.
<Enter>		Bypasses the second 'Remote IP Address' octet
<Enter>		Bypasses the third 'Remote IP Address' octet option.
<Enter>		Bypasses the fourth 'Remote IP Address' octet option.
<Enter>		Bypasses the 'Remote Port' option.
<Enter>		Bypasses the 'DisConnMode' option.
<Enter>		Bypasses the 'FlushMode' option.
<Enter>		Bypasses the hours 'DisconnTime' option.
<Enter>		Bypasses the minutes 'DisConnTime' option.
<Enter>		Bypasses the 'SendChar 1' option.
<Enter>		Bypasses the 'SendChar 2' option.
5<Enter>		Selects option 5 Expert settings.
45-Enter>		Programs the TCP Keepalive time to 45 seconds.
9<Enter>		Selects option 9 Save and exit.

Description

2 (Yellow)
Serial Port Channel 2 Status

1
2

\square

Ser

Serial Port Channel 1 Status	
Serial Port Channel 2 Status	

3 (Red)
Diagnostics
(Green)

2 (Yellow

Diagno

LED Functions Lights solid green to indicate Channel 1 is
idle. Blinks green to indicate Channel 1 is idle. Blinks green to indicate Channel 1
connected to the network and active Lights solid yellow to indicate Channel 2 is idle. Blinks yellow to indicate Channel 2 is connected to the network and active. Blinks or lights solid red in combination with the green (Channel 1) LED to indicate diagnostics and error detection.
Red solid, green (Channel 1) blinking: x : EPROM checksum error 2x: RAM error
3x: Network controller error 4x: EEPROM checksum error 5x: Duplicated IP address on the network* 6x: Software does not match hardware*

Red blinking, green (Channel 1) blinking: 4x: Faulty network connection* 5x: No DHCP response received*
Lights solid green to indicate network port is connected to the network

Power
Recycle
Switch
$\xrightarrow{\text { sawus }}$

4 (Green)

* (Green)
*non-fatal error

Explanation 2: Memory Backup Battery

If the MINI-SCPE should experience a complete power loss, the 3 volt lithium memory backup battery provides power to the
onboard memory which contains the card file, activity transactions and system configuration data. The MINI-SCPE will retain onboard memony which contains the card file, activity transactions and system configuration data. The MINIISCPE will retain
all database information during a power failure for up to 60 days. For optimum reliability, the memory backup battery should ald database information during a power failure for up to 6 days. For optim
be replaced yearly using only a type BR2325 lithium battery or equivalent.
NOTE: When setting up or senvicing the MINI-SCPE, it is recommended to leave the battery bypass sleeve in place until all
system testing is completed. By keeping the battery bypass sleeve in between the battery and the ' + ' post, you can be system testing is completed. By keeping the battery bypass sleeve in between the battery and the + 't post, you can be
certain that the memory is being completely flushed during power cycles. Upon completion, be certainto remove the battery certain that the memory is being completely flushed during po
bypass sleeve and store it within the enclosure for future use.
© 2021 RS2 Technologies. - All rights reserved.

S1-RS-232 Hardwired Address Dip Switch

Address	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
$\mathbf{0}$	Off	Off	Off	Off	Off	On	On	Off

S1-Dialup Address Dip Switch

Address	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
$\mathbf{1}$	On	Off	Off	Off	On	On	On	Off

Figure 2: RS-485 Sub-Panel Bus Termination

The SCP-1MB has four distinct RS- 485 sub-panel buses. Each bus
needs to be terminated at both the beginning and ending points. J15 is the termination jumper for the Channel 2 RS- 485 Sub-Panel Bus. J16 is the termination jumper for the Channel 3 RS-485 Sub-Panel Bus. $J 17$ is the termination jumper for the Channel 4 RS-485 Sub-Panel Bus. J18 is the termination jumper for the Channel 5 RS-485 Sub-Panel Bus. (see Two Wire RS-485 Wiring diagram for sub-panel wiring information)

Explanation 1: Memory Backup Battery

If the SCP-1MB should experience a complete power loss, the 3 volt lithium memory backup battery provides power to the
onboard memory which contains the card fie, activity transsactions and system configuration data. The SCP-1MB will retain be replaced yearly using only a type BR2325 lithium battery or equivalent.
NOTE: When setting up or servicing the SCP-1MB, it is recommended to leave the battery bypass sleeve in place until al system testing is completed. By keeping the battery bypass sleeve in between the battery and the't' post, you can be
certain that the memory is being completely flushed during power cycles. Upon completion, be certain to remove the battery
bypass sleeve and store it within the enclosure for future use. bypass sleeve and store it within the enclosure for future use.

Explanation 2: Memory Expansion

Network Interface Card Setup

The 10Base-T Network Interface Card (NIC) has been installed on the SCP-E by the factory and acts as the interface between the sof tware and the SCP-E. The NIC will require an IP Address, Subnet Mask and Gateway in order for the software to communicate with it. To program this information into the NIC, a MAC Address is required. Every NIC has a unique MAC Address which can be
ound on the white taq that is attached to it. A sample of a MAC Address would be $00-20-4 \mathrm{~A}-74-\mathrm{OF}-7 \mathrm{~F}$ and can be found under the or
odel number of the NIC (CO-E1-11AA). Programming the NIC can be performed through one of three methods.

Method One: RS2 Programmer (P/N: RS2-PROG-TOOL)
The RS2 Programmer comes with a cross-over cable which is used to connect the programmer to the SCP-Es NIC. After The RS2 Programmer comes with a cross-over cable which is used to connect the programmer to the SCP-ES NIC. After
connecting the programmer to the NIC, power up the SCP-E and the RS2 Programmer. The programming software will automatically connect
Enter the NICs MAC Address into the MAC Address fields. Enter the desired IP Address, Gateway and Subnet Mask into the ir respective fields. Select the appropriate SCP type and software application from their respective drop lists and then click the'Set
Configuration' button. One of two messages will appear, 'Configuration set!' if the programming was successful or 'Panel timeout if the programming failed.

Method Two: Access It!® Ultra SCPe IP Programmer
Access It!@ Ultra installs a utilities folder which contains the SCPe IP Programmer. If the computer resides on the same subnet as the NIC being programmed, you may program it while connected to the network. From th
It! Ultra|Utilities|SCPe IP Programmer to run the SCP-EMMINI SCP-E Programmer utility.
Enter the NICs MAC Address into the MAC Address fields. Enter the desired IP Address, Gateway and Subnet Mask into the ir respecive fields. Select the appropriate SCP type and software application from their respective drop lists and then click the'Set
Configuration' button. One of two messages will appear, 'Configuration set! if the programming was successful or 'Panel timeout' if Coniguration' button. O

Method Three: Manually
The manual ARP command is a tedious, but effective method in programming the NIC. This method should be used only as a las resort. If the computer resides on the same subnet as the NIC being programmed, you may program it while connected to the
network. From the start menu, click Start|Run followed by typing 'cmd' for NT $4.0,2000$ and XP or 'command' for 98 and Me. Th network. From the start menu, click sart Run foilowe dby typing 'cmd' for N N $4.0,2000$
open a Command Prompt window from which the following commands will be run from.

Command Prompt Window Portion		
Command	Variable Reference	General Command Information
arp -s $x x x . x x x . x x x$.xxx y yy-yy-yy-yy-yy-yy<Enter>	$\begin{aligned} & \text { Xxx.xxx.xxx.xxx =IP Address } \\ & \text { yy-yy-yy-yy-yy-yy = MAC Address } \end{aligned}$	Temporarily sets the IP Address.
telnet xxx.xxx.xxx.xxx 1<Enter>	xxx.xxx.xxx.xxx $=1 \mathrm{P}$ Address	The telnet connection will fail, but the NIC will change its IP Address.
telnet xxx.xxx.xxx.xxx 9999	xxx.xxx.xxx.xxx = IP Address	Opens a telnet session for further programming.
Telnet Session Window Portion		
Command	Variable Reference	General Command Information
<Enter>		Enters the NICs Setup Mode.
0<Enter>		Selects option 0 Server configuration.
xxx<Enter>	xxx = First IP octet	Programs the NICS first IP octet.
xxx<Enter>	xxx = Second IP octet	Programs the NICs second IP octet.
xxx<Enter>	xxx = Third P octet	Programs the NICS third IP octet.
xxx<Enter>	xxx $=$ Fourth IP octet	Programs the NICs fourth IP octet.
Y	$Y=Y$ es	Enables Gateway to be programmed.
xxx<Enter>	xxx = First Gateway octet	Programs the NIICs first Gateway octet.
xxx<Enter>	xxx = Second Gateway octet	Programs the NIIC second Gateway octet.
xxx<Enter>	xxx = Third Gateway octet	Programs the NICs third Gateway octet.
xxx<Enter>	xxx = Fourth Gateway octet	Programs the NICs fourth Gateway octet.
xx<Enter>	xx = Number of bits to mask (08) class C $24 / 8$ bits (255.255 .255 .000) (16) class B 16/16 bits (255.255.000.000) (24) class A $8 / 24$ bits (255.000.000.000)	Programs the NICs Subnet Mask
<Enter>		Bypasses the 'Change telnet config password' option.
1<Enter>		Selects option 1 Channel 1 configuration.
115200<Enter>		Programs the Baudrate to 115,200 .
4C<Enter>		Programs the I/F Mode to 4C.
02<Enter>		Programs the Flow to 02.
03001<Enter>		Programs the Port No to 03001.
C0<Enter>		Programs the ConnectMode to C 0 .
<Enter>		Bypasses the first 'Remote IP Address' octet option.
<Enter>		Bypasses the second 'Remote IP Address' octet option.
<Enter>		Bypasses the third 'Remote IP Address' octet option.
<Enter>		Bypasses the fourth 'Remote IP Address' octet option.
<Enter>		Bypasses the 'Remote Port' option.
<Enter>		Bypasses the 'DisConnMode' option.
<Enter>		Bypasses the 'FlushMode' option.
<Enter>		Bypasses the hours 'DisConnTime' option.
<Enter>		Bypasses the minutes 'DisConnTime' option.
<Enter>		Bypasses the 'SendChar 1' option.
<Enter>		Bypasses the 'SendChar 2' option.
5<Enter>		Selects option 5 Expert settings.
45<Enter>		Programs the TCP Keepalive time to 45 seconds.
9<Enter>		Selects option 9 Save and exit.

LED	Description	
$\mathbf{1}$ (Green)	Serial Port Channel 1 Status	i 2 (Yellow)
Serial Port Channel 2 Status	i	

Lights solid green to indicate Channel 1 is dile. Blinks green to indicate Channel 1 is onnected to the network and active. idle. Blinks yellow to indicate Channel 2 is connected to Blinks or lights solid red in combination with the green (Channel 1) LED to indicate diagnostics and error detection.

Red solid, green (Channel 1) blinking: x: EPROM checksum error 2x: RAM error
3x: Network controller error x: EEPROM checksum error 5 x : Duplicated IP address on the network ${ }^{\star}$

Red blinking, green (Channel 1) blinking 4x: Faulty network connection* 5x: No DHCP response received*
Lights solid green to indicate network port is

Explanation 2: Memory Backup Battery

If the SCP-E should experience a complete power loss, the 3 volt lithium memory backup battery provides power to the
onboard memery which contains the card fie, activity transactions and system configuration data. The SCP-E will retain all
database information database information during a power failure for up to 60 days. For optim
replaced yearly using only a type BR2325 lithium battery or equivalent
NOTE: When setting up or servicing the SCP-E, it is recommended to leave the battery bypass sleeve in place until all
system testing is completed. By keeping the battery bypass sleeve in between the battery and the ' + ' post you can be system testing is completed. By keeping the battery bypass sle eve in beatween the battery and the 't' post, you can be system testing is completed. By keeping the battery bypass sleeve in between he battery and the + post, you can be
certain that the memory is being completely flushed during power cycles. Upon completion, be certain to remove the battery
bypass sleeve and store it within the enclosure for future use.

Explanation 3: Memory Expansion

The SCP-E is equipped with 1 MB of upgradeable RAM. A maximum of 8 MB may be achieved by adding the SCP-MEM7 or
4MB by adding the SCP-MEM3. 4MB by adding the
Please refer to the SCP-MEM7 Quick Reference and the SCP-MEM3 Quick Reference for detailed installation instructions.
Figure 1: RS-485 Sub-Panel Bus Termination

SCP-1MB Side View

Place the edge of the SCP-MEM3 board into the standoff prior to seating the memory expansion bus.

SCP-E Side View

SCP-E Top View

SCP-E Side View
© 2021 RS2 Technologies. - Al rights reserved.

Configuring Primary 10/100 Ethernet Host Channel
For DHCP Enabled Networks

1. Set all S1 - Configuration DIP Switch DIPs OFF
2. Apply power to the EP-1501
3. Make note of the MAC address located on the side of the RJ45 jack
4. Run Access It! Universal
5. Create a new Channel

Channel Enabled: X
Protocol Type: SCP
Channel Type: IP Server
6. Create a new SCP

General Tab
Model: EP-1501
Device Installed: X
SCP Time Zone: <Set accordingly>
Initialization String: <Leave blank>
Address: 0
Comm Tab
Channel: <Set to the newly created channel>
TCP/IP Settings
IP Address: <MACxxxxxxx xxxxx>
If the MAC addre ss from step 3 was 00-0F-E5-00-03-4B then the IP Address field must be entered as the Host Name of MAC000FE500034B.
Port Number: $\mathbf{3 0 0 1}$
Encryption Settings: None
NOTE: If unable to resolve the Host Name to an IP Address, contact your local network administrator.

Bulk Erasing The System Configuration And Cardholder Databases

1. Set S1-Configuration DIP Switch DIPs $1 \& 2$ ON
2. Set S1 - Configuration DIP Switch DIPs $3 \& 4$ OFF
3. Apply power to the EP-1501

LEDs $1 \& 2$ and LEDs $3 \& 4$ flash alternately at a .5 second rate
4. Within 10 seconds, switch S1 - Configuration DIP Switch DIP 1 OFF

LED 2 flashes at a 2 second rate as memory is being erased
WARNING! DO NOT CYCLE POWER
Erasing memory takes approximately 60 seconds to complete.
LEDs $1 \& 4$ flash for 10 seconds after the memory has been erased, then the EP-1501 reboots
5. The EP-1501 is now ready to be configured as needed

Figure 2: Reader Port 2

Configuring Primary 10/100 Ethernet Host Channel
For A Stat ic IP Address

1. Set S1-Configuration DIP Switch DIP 2 ON
2. Set S1 - Configuration DIP Switch DIPs 1,3 \& 4 OFF
3. Apply power to the EP-1501
4. Manually configure a computer to 192.168.0.100
5. Using a crossover cable, connect computer to EP-1501
6. Open a web browser and go to 192.168.0.251
7. Set S1-Configuration DIP Switch DIP 1 ON
8. Click on 'Click Here to Login'
9. Click on 'Continue to this website (not recommended).
10. Enter a Username of admin
11. Enter a Password of passw ord
12. Click 'Network' from the left hand menu
13. Select 'Use Static IP configuration:'

IP Address: <Set acc ordingly>
Subnet Mask: <Set accordingly>
Default Gateway: <Set accordingly>
14. Click ' OK '
15. Click 'Apply Setting' from the left hand menu
16. Click ‘Apply, Reboot’ button
17. Wait 60 seconds for EP-1501 to reboot
18. Remove power from the EP-1501
19. Set all S1 - Configuration DIP Switch DIPs OFF
20. Remove crossover cable and connect to network
21. Apply power to the EP-1501
22. Run Access It! Universal
23. Create a new Channel

Channel Enabled: X
Protocol Type: SCP
Channel Type: IP Server
24. Create a new SCP

General Tab
Model: EP-1501
Device Installed: \mathbf{X}
SCP Time Zone: <Set accordingly>
Initialization String: <Leave blank>
Address: 0

Comm Tab

Channel: <Set to the newly created channel>
TCP/IP Settings
IP Address: <Set acc ordingly>
Port Number: $\mathbf{3 0 0 1}$
Encryption Settings: None

Figure 1: Output Wiring Options

Depending on your power source, use one of the two methods of transient clamping shown below to protect the relay contacts and to reduce electromagnetic interference (EMI emissions). Always protect ag ainst accidental overloads by wiring in an inline fuse to the C (common) side of the relay as shown below.

*Diode Selection - Inductive Load
Diode Current Rating $>1 \times$ Strike Current
Diode Break Down Voltage: 4x Strike Voltage
12Vdc or 24 Vdc Strike, Diode 1N4002 (100V / 1A) Typical

*MOV Selection - Inductive Load Clamp Voltage > $1.5 \times$ Vac RMS 24Vac Strike, Panasonic ERZ-C07DK470 Typical

Figure 4: Input Wiring Options

Configuring Primary 10/100 Ethernet Host Channel
For DHCP Enabled Networks

1. Set all S1 - Configuration DIP Switch DIPs OFF
2. Apply power to the EP-1501
3. Make note of the MAC address lo cated on the side of the RJ45 jack
4. Run Access It! Universal
5. Create a new Channel

Channel Enabled: X
Protocol Type: SCP
Channel Type: IP Server
6. Create a new SCP

General Tab
Model: EP-1501
Device Installed: X
SCP Time Zone: <Set accordingly>
Initialization String: <Leave blank>
Address: 0

Comm Tab

Channel: <Set to the newly created channel>
TCP/IP Settings
IP Address: <MACxxxxxxx xxxxx>
If the MAC address from step 3 was 00-0F-E5-00-03-4B then the IP Address field must be entered as the Host Name of MAC000FE500034B.

Port Number: $\mathbf{3 0 0 1}$

Encryption Settings: None
NOTE: If unable to resolve the Host Name to an IP Address, contact your local network administrator.

Bulk Erasing The System Configuration And Cardholder Databases

1. Set S1-Configuration DIP Switch DIPs $1 \& 2$ ON
2. Set S1 - Configuration DIP Switch DIPs $3 \& 4$ OFF
3. Apply power to the EP-1501

LEDs $1 \& 2$ and LEDs $3 \& 4$ flash alternately at a .5 second rate
4. Within 10 seconds, switch S1-Configuration DIP Switch DIP 1 OFF

LED 2 flashes at a 2 second rate as memory is being erased
WARNING! DO NOT CYCLE POWER
Erasing memory takes approximately 60 seconds to complete.
LEDs 1 \& 4 flash for 10 seconds after the memory has been erased, then the EP-1501 reboots
5. The EP-1501 is now ready to be configured as needed

Figure 2: Sub-Panel Communication

Configuring Primary 10/100 Ethernet Host Channel

For A Static IP Addres

1. Set S1-Configuration DIP Switch DIP 2 ON
2. Set S1 - Configuration DIP Switch DIPs 1,3 \& 4 OFF
3. Apply power to the EP-1501
4. Manually configure a computer to 192.168.0.100
5. Using a crossover cable, connect computer to EP-1501
6. Open a web browser and go to 192.168.0.251
7. Set S1 - Configuration DIP Switch DIP 1 ON
8. Click on 'Click Here to Login'
9. Click on 'Continue to this website (not recommended).
10. Enter a Username of admin
11. Enter a Password of passw ord
12. Click 'Network' from the left hand menu
13. Select 'Use Static IP configuration:'

IP Address: <Set accordingly>
Subnet Mask: <Set accordingly>
Default Gateway: <Set accordingly>
14. Click ' OK '
15. Click 'Apply Setting' from the left hand menu
16. Click ‘Apply, Reboot’ button
17. Wait 60 seconds for EP-1501 to reboot
18. Remove power from the EP-1501
19. Set all S1 - Configuration DIP Switch DIPs OFF
20. Remove crossover cable and connect to network
21. Apply power to the EP-1501
22. Run Access It! Universal
23. Create a new Channel

Channel Enabled: X
Protocol Type: SCP
Channel Type: IP Server
24. Create a new SCP

General Tab
Model: EP-1501
Device Installed: \mathbf{X}
SCP Time Zone: <Set accordingly>
Initialization String: <Leave blank>
Address: 0

Comm Tab

Channel: <Set to the newly created channel>
TCP/IP Settings
IP Address: <Set acc ordingly>
Port Number: $\mathbf{3 0 0 1}$
Encryption Settings: None

Figure 1: Output Wiring Options

Depending on your power source, use one of the two methods of transient clamping shown below to protect the relay contacts and to reduce electro magnetic interference (EMI emissions). Always protect ag ainst accidental overloads by wiring in an inline fuse to the C (common) side of the relay as shown below.

*Diode Selection - Inductive Load
Diode Current Rating $>1 \times$ Strike Current
Diode Break Down Voltage: 4x Strike Voltage

Figure 3: Reader Port 1

Fuse
*MOV Selection - Inductive Load
Clamp Voltage > $1.5 \times$ Vac RMS
24Vac Strike, Panasonic ERZ-C07DK470 Typical

Figure 4: Input Wiring Options

Configuring Primary 10/100 Ethernet Host Channe
 For DHCP Enabled Networks

1. Set all S1-Configuration DIP Switch DIPs OFF
2. Apply power to the EP-1502
3. Make note of the MAC address located on the side of the RJ45 jack
4. Run Access It! Universal
5. Create a new Channel

Channel Enabled: \mathbf{X}
Protocol Type: SCP
Channel Type: IP Server
6. Create a new SCP

General Tab
Model: EP-1502
Device Installed: X
SCP Time Zone: <Set accordingly>
Initialization String: <Leave blank>
Address: 0
SIO Port Speed
Port 1: 38400
Port 2: 38400
Comm Tab
Channel: <Set to the newly created channel>
TCP/IP Settings
IP Address: <MACxx xxxxx xxxxx>
If the MAC address from step 3 was 00-0F-E5-00-03-4B then the IP Address field must be entered as the Host Name of MAC000FE500034B

Port Number: $\mathbf{3 0 0 1}$

Encryption Settings: None
NOTE: If unable to resolve the Host Name to an IP Address, contact your local network administrator.
Bulk Erasing The System Configuration And Cardholder Databases

1. Set S1-Configuration DIP Switch DIPs $1 \& 2$ ON
2. Set S1-Configuration DIP Switch DIPs $3 \& 4$ OFF
3. Apply power to the EP-1502

LEDs 1 \& 2 and LEDs 3 \& 4 flash alternately at a .5 second rate
4. Within 10 seconds, switch S1 - Configuration DIP Switch DIP 1 OFF

LED 2 flashes at a 2 second rate as memory is being erased
WARNING! DO NOT CYCLE POWER
Erasing memory takes approximately 60 seconds to complete
LEDs 1 \& 4 flash for 10 seconds after the memory has been erased, then the EP- 1502 reboots 5. The EP-1502 is now ready to be configured as needed

Explanation 2: S2 - Reset Switch

Pressing the S2 - Reset Switch will cause the EP-1502 to reboot.

This process will NOT e rase the system configuration and cardholder databases.

Explanation 3: Memory Backup Battery

If the EP-1502 should experience a complete power loss, the 3 volt lithium me mory backup battery provides power to the onboard memory which contains the card file, activity transactions and system configuration reliability, the me mory backup battery should be replaced yearly using only a type BR2325, BR2330, or CR2330 lithium battery or equivalent.
For UL installations, refer to NCL-12UL Hardware Installation Manual DOCNCL12UL-R0 for replacement procedures.
NOTE: When setting up or servicing the EP-1502, it is recommended to leave the battery bypass sleeve in the ' + ' post, you can be certain that the memory is being battery bypass sleeve in between the battery and completion, be certain to remove the battery bypass sleeve and store it within the enclosure for future use Only Stand-Alone system was evaluated by UL
. Set S1-Configuration DIP Switch DIP 2 ON
2. Set S1-Configuration DIP Switch DIPs $1,3 \& 4$ OFF
3. Apply power to the EP-1502
4. Manually configure a computer to 192.168.0.100
5. Using a crossover cable, connect computer to EP-1502
6. Open a web browser and go to 192.168.0.251
7. Set S1 - Configuration DIP Switch DIP 1 ON
. Click on 'Click Here to Login'
9. Click on 'Continue to this website (not recommended).'
10. Enter a Username of admin

1. Enter a Password of password
2. Click 'Network' from the left hand menu
3. Select 'Use Static IP configuration:' IP Address: <Set accordingly>
Subnet Mask: <Set accordingly>
Default Gateway: <Set accordingly>
4. Click 'OK'
5. Click 'Apply Setting' from the left hand menu
6. Click 'Apply, Reboot' button
7. Wait 60 seconds for EP-1502 to reboot
8. Remove power from the EP-1502
9. Set all S1 - Configuration DIP Switch DIPs OFF
10. Remove crossover cable and connect to network
11. Apply power to the EP-1502
12. Run Access It! Universal
13. Create a new Channel

Channel Enabled: X
Protocol Type: SCP
Channel Type: IP Server
24. Create a new SCP

General Tab
Model: EP-1502
Device Installed: \mathbf{X}
SCP Time Zone: <Set accordingly> Initialization String: <Leave blank>
Address: 0
SIO Port Speed
Port 1: 38400
Port 2: 38400
Comm Tab
Channel: <Set to the newly created channel>
TCP/IP Settings
IP Address: <Set accordingly>
Port Number: 3001
Encryption Settings: None

Figure 3: Output Wiring Options

Depending on your power source, use one of the two methods of transient clamping shown below to protect the relay contacts and to reduce fuse to the C (common) side of the relay as shown below.

*MOV Selection - Inductive Load Clamp Voltage $>1.5 \times$ Vac RMS
24Vac Strike, Panasonic ERZ-C07DK470 Typical

Figure 4: Input Wiring_Options

Supervised

Figure 5: RS-485 Sub-Panel

 Bus Termination

The EP-1502 has one RS-485 subpanel bus and must be terminated at the beginning and ending point. J 5 is the termination jumper for the
Channel 2 RS-485 Sub-Panel Channel (see Two Wire RS-485 Wiring diagram for sub-panel wiring information)

Configuring Primary 10/100 Ethernet Host Channe For DHCP Enabled Networks

1. Set all S1-Configuration DIP Switch DIPs OFF
2. Apply power to the EP-2500
3. Make note of the MAC address located on the side of the RJ45 jack
4. Run Access It! Universal
5. Create a new Channel

Channel Enabled: \mathbf{X}
Protocol Type: SCP
Channel Type: IP Server
6. Create a new SCP

General Tab
Model: EP-2500
Device Installed: X
SCP Time Zone: <Set accordingly>
Initialization String: <Leave blank>
Address: 0
SIO Port Speed
Port 1: 38400
Port 2: $\mathbf{3 8 4 0 0}$
Comm Tab
Channel: <Set to the newly created channel>
TCP/IP Settings
IP Address: <MACxxxxxxxxxxxxx>
If the MAC address from step 3 was 00-0F-E5-00-03-4B then the IP Address field must be entered as the Host Name of MAC000FE500034B

Port Number: 3001

Encryption Settings: Non
NOTE: If unable to resolve the Host Name to an IP Address, contact your local network administrator

Bulk Erasing The System Configuration And Cardholder Databases

1. Set S1-Configuration DIP Switch DIPs $1 \& 2$ ON
2. Set S1-Configuration DIP Switch DIPs 3 \& 4 OFF
3. Apply power to the EP-2500

LEDs $1 \& 2$ and LEDs $3 \& 4$ flash alternately at a .5 second rate
4. With in 10 seconds, switch S1-Configuration DIP Switch DIP 1 OFF

LED 2 flashes at a 2 second rate as memory is being erased
WARNING! DO NOT CYCLE POWER
Erasing memory takes approximately 60 seconds to complete
LEDs 1 \& 4 flash for 10 seconds after the memory has been erased, then the EP- 2500 reboots
5. The EP-2500 is now ready to be configured as needed

Configuring Primary 10/100 Ethernet Host Channe For A Static IP Address

1. Set S1-Configuration DIP Switch DIP 2 ON
2. Set S1-Configuration DIP Switch DIPs 1,3 \& 4 OFF
3. Apply power to the EP-2500
4. Manually configure a computer to 192.168.0.100
5. Using a crossover cable, connect computer to EP-2500
6. Open a web browser and go to 192.168.0.251
7. Set S1-Configuration DIP Switch DIP 1 ON
8. Click on 'Click Here to Login'
9. Click on 'Continue to this website (not recommended).
10. Enter a Username of admin
11. Enter a Password of passw ord
12. Click 'Network' from the left hand menu
13. Select 'Use Static IP configuration:'

IP Address: <Set acc ordingly>
Subnet Mask: <Set accordingly>
Default Gateway: <Set accordingly>
14. Click 'OK'
15. Click 'Apply Setting' from the left hand menu
16. Click 'Apply, Reboot' button
17. Wait 60 seconds for EP-2500 to reboot
18. Remove power from the EP-2500
19. Set all S1 - Configuration DIP Switch DIPs OFF
20. Remove crossover cable and con nect to network
21. Apply power to the EP-2500
22. Run Access It! Universal
23. Create a new Channel

Channel Enabled: X
Protocol Type: SCP
Channel Type: IP Server
24. Create a new SCP

General Tab
Model: EP-2500
Device Installed: \mathbf{X}
SCP Time Zone: <Set accordingly>
Initialization String: <Leave blank>
Address: 0
SIO Port Speed
Port 1: 38400 Port 2: $\mathbf{3 8 4 0 0}$
Comm Tab
Channel: <Set to the newly created channel> TCP/IP Settings

IP Address: <Set accordingly>
Port Number: 3001
Encryption Settings: None

Explanation 3: Memory Backup Battery

If the EP- 2500 should experience a complete power loss, the 3 volt lithium memory backup battery provides power to the onboard memory which contains the card file, activity transactions and system configur ation data. The EP- 2500 will retain all database information during a power failure for up to 60 days. For optimum reliability, the memory backup battery should be eplaced yearly using only a type BR2325, BR2330, or CR2330 lithium battery or equivalent
For UL installations, refer to NCL-12UL Hardware Installation Manual DOCNCL12UL-R0 for replacement procedures NOIE: When setting up or servicing the EP-2500, it is recommended to leave the battery bypass sleeve in place until all system testing is completed. By keeping the battery bypass sleeve in between the battery and the + post, you can be certain that the memory is being completely flushed during power cycles. Upon completion, be certain to remove the battery bypass sleeve and store it within the enclosure for future use.

Explanation 2: S2-Reset Switch

[^0]Figure 1: RS-485 Sub-Panel Bus Termination

(Channe 2 Termination) ${ }^{\text {¢ }}$	¢	-
(Channel 3 Termination)		
	呂	-

The EP-2500 has two distinct 2 wire RS-485 sub-panel buses. Each bus needs to be terminated at both the beginning and ending points J 4 is the termination jumper for the Channel 2 RS-485 Sub-Panel Bus. J5 is the termination jumper for the Channel 3 RS-485 Sub-Panel Bus (see Two Wire RS-485 Wiring diagram for sub-panel wiring information)

10/100 - LED SPD (amber) - LED ACT (green)	100 Ethernet Host Channel (Explanation 1) ost Channel LED Function Ethernet Speed $10 \mathrm{Mb} / \mathrm{S}$ if off $100 \mathrm{Mb} / \mathrm{S}$ if on Link \& Activity No link if off Good link if on Activity if flashing
-LED 1 -LED 2 -LED 3 -LED 4 -LED 5 -LED 6 -LED 7	Normal LED Function Off-Line / On-Line \& Battery Status Off-Line if 20% on On-Line if 80% on Battery low if double flashing Host Channel Activity (Ethernet) Internal Sub-Panel Activity Channel 2 RS-485 Sub-Panel Activity Channel 3 RS-485 Sub-Panel Activity Reader Port 1 Activity Reader Port 2 Activity
Reset Switches (Explanation 2)	
S1 - Configuration Dip Switch (Explanation 1)	
Channel 2 RS-485 Sub-Panel Bus (2 wire ONLY! - Figure 5)	
Channel 3 RS-485 Sub-Panel Bus (2 wire ONLY! - Figure 5)	
Door Contact 1 (N/C - Jumper if not used - Figure 4)	
Exit Request 1 (N/O - Figure 4)	
Door Contact 2 (N/C - Jumper if not used - Figure 4)	
Exit Request 2 (N/O - Figure 4)	
Auxiliary Input 5 (N/C - Jumper if not used - Figure 4)	
Auxiliary Input 6 (N/C - Jumper if not used - Figure 4)	
Auxiliary Input 7 (N/C - Jumper if not used - Figure 4)	
Auxiliary Input 8 (N/C - Jumper if not used - Figure 4)	

[^1]
Configuring Primary 10/100 Ethernet Host Channel (DHCP IP)

1. Set all S1-Configuration DIP Switch DIPs OFF
2. Apply power to the EP-4502
3. Make note of the MAC address located on the side of the RJ45 jack
4. Run Access It! Universal
5. Create a new Channel

Channel Enabled: \mathbf{X}
Protocol Type: SCP
Channel Type: IP Server
6. Create a new SCP

General Tab
Model: EP-4502 xMB
$x \mathrm{MB}=$ Default card database size is 32MB, value can be adjusted within EP web browser.
Device Installed: \mathbf{X}
SCP Time Zone: <Set accordingly>
Initialization String: <Leave blank>
Address: 0
SIO Port Speed
Port 1: $\mathbf{3 8 4 0 0}$
Port 2: 38400
Comm Tab
Channel: <Set to the newly created channel>
TCP/IP Settings
IP Address: <MACxx xxxxx xxxxx>
If the MAC address from step 3 was 00-0F-E5-00-03-4B then the IP Address field must be entered as the Host Name of MAC000FE500034B.
Port Number: $\mathbf{3 0 0 1}$
Encryption Settings: None
If unable to resolve the Host Name to an IP Address, contact your local network administrator.

Bulk Erasing The System Configuration And Cardholder Databases

1. Set S1-Configuration DIP Switch DIPs $1 \& 2$ ON
2. Set S1 - Configuration DIP Switch DIPs $3 \& 4$ OFF
3. Apply power to the EP-4502

LEDs 1 \& 2 and LEDs 3 \& 4 flash alternately at a .5 second rate
4. Within 10 seconds, switch S1-Configuration DIP Switch DIP 1 OFF

LED 2 flashes at a 2 second rate as memory is being erased
WARNING! DO NOT CYCLE POWER
Erasing memory takes approximately 60 seconds to complete
LEDs 1 \& 4 flash for 10 seconds after the memory has been erased, then the EP-4502 reboots
5. The EP-4502 is now ready to be configured as needed

Explanation 2: S2-Reset Switches

Pressing the S1 or S2 - Reset Switches will cause the EP-4502 to reboot.
This process will NOT erase the system configuration and cardholder databases.

Explanation 3: Memory Backup Battery

If the EP-4502 should experience a complete power loss, the 3 volt lithium memory backup battery provides power to the onboard memory which contains the card file, activity transactions and system configuration data. The EP-4502 will retain all database information during a power failure for up to 60 days. For optimum reliabiility, the memory backup battery should be replaced yearly using only a type BR2325, BR2330, or CR2330 lithium battery or equivalent.
NOTE: When setting up or servicing the EP-4502, it is recommended to leave the battery bypass sleeve in place until all system testing is completed. By keeping the battery bypass sleeve in between the battery and the '+' post, you can be certain that the memory is be ing completely flushed during power cycles. Upon completion, be certain to remove the battery bypass sleeve and store it within the enclosure for future use.

Configuring Primary 10/100 Ethernet Host Channel (Static IP)

Set S1 - Configuration DIP Switch DIP 2 ON
2. Set S1-Configuration DIP Switch DIPs $1,3 \& 4$ OFF
3. Apply power to the EP-4502
4. Manually configure a computer to 192.168.0.100
5. Using a crossover cable, connect computer to EP-4502
6. Open a web browser and go to 192.168.0.251
. Set S1 - Configuration DIP Switch DIP 1 ON
8. Click on 'Click Here to Login'
9. Click on 'Continue to this website (not recommended).'
10. Enter a Username of admin and a Password of passw ord
11. Click 'Network' from the left hand menu
12. Select 'Use Static IP configuration:'

IP Address: <Set acc ordingly>
Subnet Mask: <Set accordingly>
Default Gateway: <Set accordingly>
13. Click 'Accept'
14. Click 'Auto-Save' from the left hand menu

Card Database Size: <Set accordingly>
15. Click 'Apply Setting' from the left hand menu
6. Click 'Apply, Reboot' button
17. Wait 60 seconds for EP-4502 to reboot
18. Remove power from the EP-4502
19. Set all S1 - Configuration DIP Switch DIPs OFF
20. Remove crossover cable and connect to network
21. Apply power to the EP-4502
22. With in Access It! Universal.NET create a new Channe Channel Enabled: X
Protocol Type: SCP
Channel Type: IP Server
23. Within Access It! Universal.NET create a new SCP General Tab
Model: EP-4502 xMB
xMB = Card database size configured in step 14
Device Installed: X
SCP Time Zone: <Set accordingly>
Initialization String: <Leave blank>
Address: 0
SIO Port Speed
Port 1: $\mathbf{3 8 4 0 0}$
Port 2: 38400
Comm Tab
Channel: <Set to the newly created channel> TCP/IP Settings

IP Address: <Set accordingly>
Port Number: $\mathbf{3 0 0 1}$
Encryption Settings: None

Figure 3: Output Wiring Options

Depending on your power source, use one of the two methods of transient clamping shown below to protect the relay contacts and to reduce electro magnetic interference (EMI emissions). Always protect ag ainst accidental overloads by wiring in an inline fuse to the C (common) side of the relay as shown below

MOV Selection - Inductive Load Clamp Voltage > $1.5 \times$ Vac RMS 24Vac Strike, Panasonic ERZ-C07DK470 Typical

Figure 5: RS-485 Sub-Panel Bus Termination

The EP- 4502 has two RS- 485 subpanel buses which must be terminated
at their beginning and ending points. 5 \& 9 . J 5 \& $\mathrm{J9}$ are termination jumpers for their respective Sub-Panel Bus
(see Two Wire RS-485 Wiring diagram
for sub-panel wiring information)
© 2021 RS2 Technologies. - Al rights reserved.

Configuring 10/100 Ethernet Host Channel For DHCP And DNS Enabled Networks

1. Set all S1-Configuration DIP Switch DIPs OFF
2. Apply power to the LP-1501
3. Make note of the MAC address located on the side of the RJ45 jack
4. Run Access It! Universal
5. Create a new Channel

Channel Enabled: \mathbf{x}
Protocol Type: SCP
Channel Type: IP Server
6. Create a new SCP

General Tab
Model: LP-1501
Device Installed: \mathbf{X}
SCP Time Zone: <Set accordingly>
Initialization String: <Leave blank>
Address: 0
Comm Tab
Channel: <Set to the newly created channel>
TCP/IP Settings
IP Address: <MACxx xxxxxxxxxx>
If the MAC addre ss from step 3 was 00-0F-E5-00-03-4B then the IP Address field must be entered as the Host Name of MAC000FE500034B.

Port Number: $\mathbf{3 0 0 1}$

Encryption Settings: None
If unable to resolve the Host Name to an IP Address, contact your local network administrator.

Bulk Erasing The System Configuration And Cardholder Databases

1. Set S1-Configuration DIP Switch DIPs $1 \& 2$ ON
2. Set S1 - Configuration DIP Switch DIPs 3 \& 4 OFF
3. Apply power to the LP-1501

LEDs $1 \& 2$ and LEDs 3 \& 4 flash alternately at a .5 second rate
4. Within 10 seconds, switch S1-Configuration DIP Switch DIP 1 OFF

LED 2 flashes at a 2 second rate as memory is being erased WARNING! DO NOT CYCLE POWER
Erasing memory takes approximately 60 seconds to complete
LEDs 1 \& 4 flash for 10 seconds after the memory has been erased, then the LP-1501 reboots
5. The LP-1501 is now ready to be configured as needed

Configuring 10/100 Ethernet Host Channel For A Static IP Address

1. Set S1 - Configuration DIP Switch DIP 2 ON
2. Set S1-Configuration DIP Switch DIPs 1, 3 \& 4 OFF
3. Apply power to the LP-1501
4. Manually configure a computer to 192.168.0.100
5. Using a crossover cable, connect computer to LP-1501
6. Open a web browser and go to 192.168.0.251
7. Set S1-Configuration DIP Switch DIP 1 ON
8. Click on 'Click Here to Login'
9. Click on 'Continue to this website (not recommended).'
10. Enter a Username of admin
11. Enter a Password of passw ord
12. Click 'Network' from the left hand menu
13. Select 'Use Static IP configuration:'

IP Address: <Set acc ordingly>
Subnet Mask: <Set accordingly>
Default Gateway: <Set accordingly>
14. Click 'OK'
15. Click 'Apply Setting' from the left hand menu
16. Click 'Apply, Reboot’ button
17. Wait 60 seconds for LP-1501 to reboot
18. Remove power from the LP-1501
19. Set all S1 - Configuration DIP Switch DIPs OFF
20. Remove crossover cable and connect to network
21. Apply power to the LP-1501
22. Run Access It! Universal
23. Create a new Channel

Channel Enabled: \mathbf{X}
Protocol Type: SCP
Channel Type: IP Server
24. Create a new SCP

General Tab
Model: LP-1501
Device Installed: \mathbf{X}
SCP Time Zone: <Set accordingly>
Initialization String: <Leave blank>
Address: 0

Comm Tab

Channel: <Set to the newly created channel> TCP/IP Settings

IP Address: <Set acc ordingly>
Port Number: 3001
Encryption Settings: None

Figure 2: Wiegand Reader Port 2

Figure 3: Reader Port 1 Options
Wiegand Reader Example UNG: 6 -

Explanation 2: Alternate Host Channel

A micro USB Ethernet adapter may be used to enable alternate host channel communication. Alternate host channel communication is only used to communicate enabled SIOs.

Manufacturer: Plugable Model: USB20OTGE100

Figure 1: Output Wiring Options

Figure 4: Input Wiring Options CABUNG: 1 twisted pair per input, 30Ω maximum
Non-Supervised
Supervised

Configuring 10/100 Ethernet Host Channel For DHCP And DNS Enabled Networks

1. Set all S1 - Configuration DIP Switch DIPs OFF
2. Apply power to the LP-1501 Plus
3. Make note of the MAC address located on the side of the RJ45 jack
4. Run Access It! Universal
5. Create a new Channel

Channel Enabled: X
Protocol Type: SCP
Channel Type: IP Server
6. Create a new SCP

General Tab
Model: LP-1501 Plus
Device Installed: \mathbf{X}
SCP Time Zone: <Set accordingly>
Initialization String: <Leave blank>
Address: 0

Comm Tab

Channel: <Set to the newly created channel>
TCP/IP Settings
IP Address: <MACxx xxxxxxxxxx>
If the MAC address from step 3 was 00-0F-E5-00-03-4B then the IP Address field must be entered as the Host Name of MAC000FE500034B.

Port Number: $\mathbf{3 0 0 1}$

Encryption Settings: None
If unable to resolve the Host Name to an IP Address, contact your local network administrator.

Bulk Erasing The System Configuration And Cardholder Databases

1. Set S1-Configuration DIP Switch DIPs $1 \& 2$ ON
2. Set S1-Configuration DIP Switch DIPs $3 \& 4$ OFF
3. Apply power to the LP-1501 Plus

LEDs $1 \& 2$ and LEDs $3 \& 4$ flash alternately at a .5 second rate
4. Within 10 seconds, switch S1-Configuration DIP Switch DIP 1 OFF

LED 2 flashes at a 2 second rate as memory is being erased
WARNING! DO NOT CYCLE POWER
Erasing memory takes approximately 60 seconds to complete.
LEDs 1 \& 4 flash for 10 seconds after the memory has been erased, then the LP-1501 Plus reboots
5. The LP-1501 Plus is now ready to be configured as needed

Figure 2: Sub-Panel Communication

Configuring 10/100 Ethernet Host Channel For A Static IP Address

1. Set S1-Configuration DIP Switch DIP 2 ON
2. Set S1-Configuration DIP Switch DIPs 1, 3 \& 4 OFF
3. Apply power to the LP-1501 Plus
4. Manually configure a computer to 192.168.0.100
5. Using a crossover cable, connect computer to LP-1501 Plus
6. Open a web browser and go to 192.168.0.251
7. Set S1-Configuration DIP Switch DIP 1 ON
8. Click on 'Click Here to Login'
9. Click on 'Continue to this website (not recommended).
10. Enter a Username of admin
11. Enter a Password of passw ord
12. Click 'Network' from the left hand menu
13. Select 'Use Static IP configuration:'

IP Address: <Set acc ordingly>
Subnet Mask: <Set accordingly>
Default Gateway: <Set accordingly>
14. Click 'OK'
15. Click 'Apply Setting' from the left hand menu
16. Click 'Apply, Reboot’ button
17. Wait 60 seconds for LP-1501 Plus to reboot
18. Remove power from the LP-1501 Plus
19. Set all S1 - Configuration DIP Switch DIPs OFF
20. Remove crossover cable and connect to network
21. Apply power to the LP-1501 Plus
22. Run Access It! Universal
23. Create a new Channel

Channel Enabled: X
Protocol Type: SCP
Channel Type: IP Server
24. Create a new SCP

General Tab
Model: LP-1501 Plus
Device Installed: \mathbf{X}
SCP Time Zone: <Set accordingly>
Initialization String: <Leave blank>
Address: 0

Comm Tab

Channel: <Set to the newly created channel> TCP/IP Settings

IP Address: <Set accordingly>
Port Number: 3001
Encryption Settings: None

Figure 1: Output Wiring Options
CABLING: As required for the load

Figure 4: Input Wiring Options
CABUNG: 1 twisted pair per input, 30Ω maximum
Non-Supervised
Supervised

Normally Normally
Open Closed
.

 \cdots <

Figure 3: Wiegand Reader Port 1 CABUNG: 6 -conductor, 18 AWG, 500 feet (150 m) max

	Normal LED Function
-LED 1	Off-Line / On-Line and Battery Status Off-Line if 20% on On-Line if 80% on Battery low if double flashing
-LED 2	Host Channel Activity (Ethernet)
-LED 3	Channel 1 Internal Sub-Panel Activity
-LED 4	Channel 2 RS-485 Sub-Panel Activity
-LED 5	Not used
-LED R1	Reader Port 1 Activity
-LED R2	Reader Port 2 Activity

Figure 1

Wiegand Reader Example
CABUNG: 6 -conductor, 18 AWG, 500 feet (150 m) max

Figure 2

*Not evaluated by UL

$\mathbf{\text { Power (500mA max plus readers) }}$CABUNG: 1 twisted pair, minimum 18 AWG VIN (Voltage In): Positive 12 to 24 Volts $\pm 10 \%$ DC GND (Ground): Input Voltage Return (-)
Tamper Input
N/C (jumper if not used)
N/C (jumper if not used)
Nower Fault

Primary 10/100 Ethernet Host Channel See Explanation 1

Normal LED Function

- LED D16 Ethernet Host Channel Activity
(red)
-LED SPD Ethernet Speed
(yellow) $10 \mathrm{Mb} / \mathrm{S}$ if off
LED ACT $100 \mathrm{Mb} / \mathrm{S}$ if on
LED ACT Link \& Activity
(green) No link if off
Good link if on
Activity if flashing

Alternate Host Channel
See Explanation 4

Channel 2 RS-485 Sub-Panel Bus See Figure 5

Door Contact 2 - N/C (jumper if not used) See Figure 4

Exit Request 2 - N/O
See Figure 4

Auxiliary Input $5-\mathrm{N} / \mathrm{O}$ See Figure 4
Auxiliary Input 6 - N/O
See Figure 4
Auxiliary Input 7 - N/O
See Figure 4
Auxiliary Input 8 - N/O
See Figure 4

RS2 Technologies - 400 Fisher Street, Suie G - Munster, IN 46321-(877) 682-3532 - Fax (219) 836-9102

Configuring Primary 10/100 Ethernet Host Channel For DHCP And DNS Enabled Networks

1. Set all S1-Configuration DIP Switch DIPs OFF
2. Apply power to the LP-1502
3. Make note of the MAC address located on the side of the RJ45 jack
4. Run Access It! Universal.NET*
5. Create a new Channel

Channel Enabled: X
Protocol Type: SCP
Channel Type: IP Server
6. Create a new SCP

General Tab
Model: LP-1502
Device Installed: \mathbf{X}
SCP Time Zone: <Set acc ordingly>
Initialization String: <Leave blank>
Address: 0
SIO Port Speed
Port 1: $\mathbf{3 8 4 0 0}$
Port 2: 38400
Comm Tab
Channel: <Set to the newly created channel>
TCP/IP Settings
IP Address: <MACxx xxxxx xxxxx>
If the MAC addre ss from step 3 was 00-0F-E5-00-03-4B then the IP Address field must be entered as the Host Name of MAC000FE500034B

Port Number: $\mathbf{3 0 0 1}$

Encryption Settings: None
If unable to resolve the Host Name to an IP Address, contact your local network administrator.

Bulk Erasing The System Configuration And Cardholder Databases

1. Set S1-Configuration DIP Switch DIPs $1 \& 2$ ON
2. Set S1-Configuration DIP Switch DIPs 3 \& 4 OFF
3. Apply power to the LP-1502

LEDs 1 \& 2 and LEDs $3 \& 4$ flash alternately at a .5 second rate
4. Within 10 seconds, switch S1 - Configuration DIP Switch DIP 1 OFF

LED 2 flashes at a 2 second rate as memory is being erased
WARNINGI DO NOT CYCLE POWER
Erasing memory takes approximately 60 seconds to complete
LEDs 1 \& 4 flash for 10 seconds after the memory has been erased, then the LP-1502 reboots 5. The LP-1502 is now ready to be configured as needed

Explanation 2: Reset Switch

Pressing the S2 - Reset Switch will cause the LP-1502 to reboot.
This process will NOT erase the system configuration and cardholder databases.

Explanation 3: Memory Backup Battery

If the LP-1502 should experience a complete power loss, the 3 volt lithium memory backup battery provides power to the onboard memory which contains the card file, activity transactions and system configur ation reliability, the memory backup battery should be replaced yearly using only a type BR 2330 or CR2330 lithium battery or equivalent.
For UL installations, refer to NCL-12UL Hardware Installation Manual DOCNCL12UL-R1 for replacement procedures.
NOTE*: When setting up or servicing the LP-1502, it is recommended to leave the J19-Battery Backup jumper OFF until all system testing is completed. By keeping the J 19 - Battery Backup jumper OFF, you can be certain that the memory is being completely flushed during power cycles. Upon completion, be sure to set the J19 - Battery Backup jumper ON

1. Set S1-Configuration DIP Switch DIP 2 ON
2. Set S1-Configuration DIP Switch DIPs $1,3 \& 4$ OFF
3. Apply power to the LP-1502
4. Manually configure a computer to 192.168.0.100
5. Using a crossover cable, connect computer to LP-1502
6. Open a web browser and go to 192.168.0.251
7. Set S1 - Configuration DIP Switch DIP 1 ON
8. Click on 'Click Here to Login
9. Click on 'Continue to this website (not recommended).
10. Enter a Username of admin
11. Enter a Password of password
12. Click 'Network' from the left hand menu
13. Select 'Use Static IP configuration:' IP Address: <Set accordingly>
Subnet Mask: <Set accordingly>
Default Gateway: <Set accordingly>
14. Click 'OK'
15. Click 'Apply Setting' from the left hand menu
16. Click 'Apply, Reboot' button
17. Wait 60 seconds for LP-1502 to reboot
18. Remove power from the LP-1502
19. Set all S1 - Configuration DIP Switch DIPs OFF
20. Remove crossover cable and connect to network

Explanation 4: Alternate Host Channel *

A micro USB Ethernet adapter may be used to enable alternate host channel communication. Alternate host channel communication is only used to communicate to the server machine and not to downstream Ethernet enabled SIOs.

Manufa cturer: Plugable
Model: USB20OTGE100

Figure 4: Input Wiring Options

Supervised

1. Apply power to the LP-1502
2. Run Access It! Universal.NET*
3. Create a new Channel

Channel Enabled: X
Protocol Type: SCP
Channel Type: IP Server
24. Create a new SCP

General Tab
Model: LP-1502
Device Installed: \mathbf{X}
SCP Time Zone: <Set accordingly> Initialization String: <Leave blank>
Address: 0
SIO Port Speed
Port 1: 38400
Port 2: 38400
Comm Tab
Channel: <Set to the newly created channel> TCP/IP Settings

IP Address: <Set accordingly>
Port Number: $\mathbf{3 0 0 1}$
Encryption Settings: None

Figure 3: Output Wiring Options

Door lock mechanisms can gener ate feedback to the relay relay. For this reason, a diode must be used to protect the relay. Wire should be of sufficient gauge to avo id voltage loss.

ode Selection - Inductive Load
Diode Current Rating > $1 x$ Strike Current
Diode Break Down Voltage: $4 \times$ Strike Voltage
12 Vdc or 24 Vdc Strike, Diode 1 N 4002 (100V / 1A) Typical
Figure 5: RS-485 Sub-Panel Bus Termination
CABUNG: 1 twisted pair w/drain \& shield, $24 \mathrm{AWG}, 120 \Omega$ impedance he beginning and ending point $J 5$ is the te rmination jumper for the (see (see Two Wire RS-485 Wiring diagram for sub-panel wiring information)

Configuring Primary 10/100 Ethernet Host Channel For DHCP And DNS Enabled Networks

1. Set all S1-Configuration DIP Switch DIPs OFF
2. Apply power to the LP-2500
3. Make note of the MAC address located on the side of the RJ45 jack
4. Run Access It! Universal.NET*
5. Create a new Channel

Channel Enabled: X
Protocol Type: SCP
Channel Type: IP Server
6. Create a new SCP

General Tab
Model: LP-2500
Device Installed: \mathbf{X}
SCP Time Zone: <Set accordingly>
Initialization String: <Leave blank>
Address: 0
SIO Port Speed
Port 1: $\mathbf{3 8 4 0 0}$
Port 2: 38400
Comm Tab
Channel: <Set to the newly created channel>
TCP/IP Settings
IP Address: <MACxxxxxxxxxxxxx>
If the MAC addre ss from step 3 was 00-0F-E5-00-03-4B then the IP Address field must be entered as the Host Name of MAC000FE500034B
Port Number: $\mathbf{3 0 0 1}$
Encryption Settings: None
If unable to resolve the Host Name to an IP Address, contact your local network administrator

Bulk Erasing The System Configuration And Cardholder Databases

1. Set S1-Configuration DIP Switch DIPs $1 \& 2$ ON
2. Set S1 - Configuration DIP Switch DIPs 3 \& 4 OFF
3. Apply power to the LP-2500

LEDs 1 \& 2 and LEDs 3 \& 4 flash alternately at a .5 second rate 4. Within 10 seconds, switch S1-Configuration DIP Switch DIP 1 OFF

LED 2 flashes at a 2 second rate as memory is being erased
WARNINGI DO NOT CYCLE POWER
Erasing memory takes approximately 60 seconds to complete
LEDs 1 \& 4 flash for 10 seconds after the memory has been erased, then the LP-2500 rebo ots 5. The LP-2500 is now ready to be configured as needed

Configuring Primary 10/100 Ethernet Host Channel For A Static IP Address

1. Set S1-Configuration DIP Switch DIP 2 ON
2. Set S1-Configuration DIP Switch DIPs 1,3 \& 4 OFF
3. Apply power to the LP-2500
4. Manually configure a computer to 192.168.0.100
5. Using a crossover cable, connect computer to LP-2500
6. Open a web browser and go to 192.168.0.251
7. Set S1-Configuration DIP Switch DIP 1 ON
8. Click on 'Click Here to Login
9. Click on 'Continue to this website (not recommended).'
10. Enter a Username of admin
11. Enter a Password of passw ord
12. Click 'Network' from the left hand menu
13. Select ‘Use Static IP configuration:’ IP Address: <Set accordingly>
Subnet Mask: <Set accordingly>
Default Gateway: <Set accordingly>
14. Click 'Accept'
15. Click 'Apply Setting' from the left hand menu
16. Click 'Apply Settings, Reboot' button
17. Wait 60 seconds for LP-2500 to reboot
18. Remove power from the LP-2500
19. Set all S1 - Configuration DIP Switch DIPs OFF
20. Remove crossover cable and connect to network
21. Apply power to the LP-2500
22. Run Access It! Universal.NET*
23. Create a new Channel

Channel Enabled: X
Protocol Type: SCP
Channel Type: IP Server
24. Create a new SCP

General Tab
Model: LP-2500
Device Installed: \mathbf{X}
SCP Time Zone: <Set accordingly>
Initialization String: <Leave blank>
Address: 0
SIO Port Speed
Port 1: 38400
Port 2: $\mathbf{3 8 4 0 0}$
Comm Tab
Channel: <Set to the newly created channel> TCP/IP Settings

IP Address: <Set acc ordingly>
Port Number: 3001
Encryption Settings: None

Explanation 3: Memory Backup Battery

If the LP-2500 should experience a complete power loss, the 3 volt lithium memory backup battery provides power to the onboard memory which contains the card file, activity transactions and system configur ation data. The LP-2500 will retain all database information during a power failure for up to 60 days. For optimum reliability, the me mory backup battery should be eplaced yearly using only a type BR2330 or CR2330 lithium battery or equivalent.
For UL installations, refer to NCL-12UL Hardware Installation Manual DOCNCL12UL-R1 for replacement procedures.
NOTE*: When setting up or servicing the LP-2500, it is recommended to leave the J 19 - Battery Backup jumper OFF until all system testing is completed. By keeping the J 19 - Battery Backup jumper OFF, you can be certain that the me mory is being completely flushed during power cycles. Upon completion, be sure to set the J'19-Battery Backup jumper ON

Explanation 4: Alternate Host Channel*

A micro USB Ethernet adapter may be used to enable alternate host channel communication. Alternate host channel communication is only used to communicate to the server machine and not to downstream Ethernet enabled SIOs

Manufa cturer: Plugable
Model: USB20OTGE100
Figure 1: RS-485 Sub-Panel Bus Termination

Pressing the S2 - Reset Switch will cause the LP-2500 to reboot.
This process will NOT erase the system configuration and cardholder databases

The LP-2500 has two distinct 2 wire RS-485 sub-panel buses. Each bus needs to be terminated at both the beginning and ending points. J 4 is the termination jumper for the Channel 2 RS-485 Sub-Panel Bus. J 5 is the termination jumper for the Channel 3 RS-485 Sub-Panel Bus. (see Two Wire RS-485 Wiring diagram for sub-panel wiring information)

- Ø	$\begin{aligned} & \mathrm{TB3} 3 \\ & \mathrm{TR}_{+} \end{aligned}$	
- Ø	TR-	The LP-2500 has two distinct 2 wire RS-485 sub-panel buses. Each bus needs to be terminated at both the beginning and ending points.
- Ø	GND	J 4 is the termination jumper for the Channel 2 RS-485 Sub-Panel Bus.
- Ø	${ }_{\text {TR }}$	J5 is the termination jumper for the Channel 3 RS-485 Sub-Panel Bus.
	TR-	(see Two Wire RS-485 Wiring diagram for sub-panel wiring information)

-LED 1 -LED 2 -LED 3 -LED 4 -LED 5 - LED R1 -LED R2	Normal LED Function Off-Line / On-Line and Battery Status Off-Line if 20% on On-Line if 80% on Battery low if double flashing Serial Host Channel Activity Channel 1 Internal Sub-Panel Activity Channel 2 RS485-1 Sub-Panel Activity Channel 3 RS485-2 Sub-Panel Activity Reader Port 1 Activity Reader Port 2 Activity
S1 - Configuration Dip Switch See Explanation 1	
Figure 1 Wiegand Reader Example CABUNG: 6-conductor, 18 AWG, 500 feet (150 m) max	
Wiegand Reader	\qquad
OSDP/ RS-485 Reader	\qquad Ground 485- \qquad \qquad 485+ \qquad Figure 2 OSDP / RS-485 Reader Example UNG: 1 twisted pair, 18 AWG for power and 1 twisted pair w/drain \& shield, $24 \mathrm{AWG}, 120 \Omega$ impedance, 2,000 feet (610 m) max for communication
Normally Normally	Door Strike 1 Open Wiring: 5A@30Vdc resistive Closed Wiring: 3A@30Vdc resistive See Figure 3
Normally Normally	Auxiliary Output 2 Open Wiring: 5A@30Vdc resistive Closed Wiring: 3A@30Vdc resistive See Figure 3
Normally Normally	Door Strike 2 Open Wiring: 5A@30Vdc resistive Closed Wiring: 3A@30Vdc resistive See Figure 3
Normally Normally	Auxiliary Output 4 Open Wiring: 5A@30Vdc resistive Closed Wiring: 3A@30Vdc resistive See Figure 3

Configuring Primary 10/100 Ethernet Host Channel For DHCP And DNS Enabled Networks

1. Set all S1 - Configuration DIP Switch DIPs OFF
2. Apply power to the LP-4502
3. Make note of the MAC address located on the side of the RJ45 jack
4. Run Access It! Universal
5. Create a new Channel

Channel Enabled: X
Protocol Type: SCP
Channel Type: IP Server
6. Create a new SCP

General Tab
Model: LP-4502 xMB
xMB = Default card database size is 32MB, value can be adjusted within LP web browser
Device Installed: X
SCP Time Zone: <Set accordingly>
Initialization String: <Leave blank>
Address: 0
SIO Port Speed
Port 1: 38400
Port 2: 38400
Comm Tab
Channel: <Set to the newly created channel>
TCP/IP Settings
IP Address: <MACxxxxxxxxxxxx>
If the MAC address from step 3 was 00-0F-E5-00-03-4B then the IP Address field must be entered as the Host Name of MAC000FE500034B.
Port Number: $\mathbf{3 0 0 1}$
Encryption Settings: None
If unable to resolve the Host Name to an IP Address, contact your local network administrator.

> Bulk Erasing The System Configuration And Cardholder Databases

1. Set S1-Configuration DIP Switch DIPs $1 \& 2$ ON
2. Set S1-Configuration DIP Switch DIPs 3 \& 4 OFF
3. Apply power to the LP-4502

LEDs 1 \& 2 and LEDs 3 \& 4 flash alternately at a .5 second rate
4. Within 10 seconds, switch S1-Configuration DIP Switch DIP 1 OFF

LED 2 flashes at a 2 second rate as memory is being erased
WARNING! DO NOT CYCLE POWER
Erasing memory takes approximately 60 seconds to complete
LEDs 1 \& 4 flash for 10 seconds after the memory has been erased, then the LP-4502 reboots
5. The LP-L502 is now ready to be configured as needed

Explanation 2: Reset Switch

Pressing the S2 - Reset Switch will cause the LP-4502 to reboot

This process will NOT erase the system configuration and cardholder databases

Explanation 3: Memory Backup Battery

If the LP-4502 should experience a complete power loss, the 3 volt lithium me mo ry backup battery provides power to the onboard memory which contains the card file, activity transactions and system configur ation
data. The LP-4502 will retain all database information during a power failure for up to 60 days. For optimu reliability, the memory backup battery should be replaced yearly using only a type BR2330 or CR2330 lithium battery or equivalent.

NOTE: When setting up or servicing the LP-4502, it is recommended to leave the J19-Battery Backup umper OFF until all system testing is completed. By keeping the $J 19$ - Battery Backup jumper OFF, you can set the J19-Battery Backup jumper ON.

Configuring Primary 10/100 Ethernet Host Channel For A Static IP Address

1. Set S1-Configuration DIP Switch DIP 2 ON
2. Set S1 - Configuration DIP Switch DIPs 1,3 \& 4 OFF
3. Apply power to the LP-4502
4. Manually configure a computer to 192.168.0.100
5. Using a crossover cable, connect computer to LP-4502
6. Open a web browser and go to 192.168.0.251
7. Set S1 - Configuration DIP Switch DIP 1 ON
. Click on 'Click Here to Login
8. Click on 'Continue to this website (not recommended).'
9. Enter a Username of admin and a Password of password
10. Click 'Network' from the left hand menu
11. Select 'Use Static IP configuration:'

IP Address: <Set acc ordingly>
Subnet Mask: <Set accordingly>
Default Gateway: <Set accordingly>
13. Click 'Accept'
14. Click 'Auto-Save' from the left hand menu

Card Database Size: <Set accordingly>
15. Click 'Apply Setting' from the left hand menu
6. Click ‘Apply, Reboot’ button
17. Wait 60 seconds for LP-4502 to reboot
18. Remove power from the LP-4502
19. Set all S1 - Configuration DIP Switch DIPs OFF
20. Remove crossover cable and connect to network

Explanation 4: Alternate Host Channel

A micro USB Ethernet adapter may be used to enable Alternate host channel communication. Alternate host channel communication is only used to communicate to the server machine and not to downstream Ethernet enabled SIOs

Manufacturer: Plugable
Model: USB20OTGE 10

Figure 4: Input Wiring Options

Supervised
21. Apply power to the LP-4502
22. With in Access It! Universal.NET create a new Channel Channel Enabled: X
Protocol Type: SCP
Channel Type: IP Server
23. Within Access It! Universal.NET create a new SCP General Tab

Model: LP-4502 xMB
xMB = Card database size configured in step 14 Device Installed: \mathbf{X}
SCP Time Zone: <Set accordingly> Initialization String: <Leave blank>
Address: 0
SIO Port Speed
Port 1: 38400
Port 2: $\mathbf{3 8 4 0 0}$
Comm Tab
Channel: <Set to the newly created channel> TCP/IP Settings

IP Address: <Set accordingly>
Port Number: $\mathbf{3 0 0 1}$
Encryption Settings: None

Figure 3: Output Wiring Options

Door lock mechanisms can gener ate feedback to the relay celay. For this reason, a diode must be used to protect the relay. Wire should be of sufficient gauge to avo id voltage loss.

de Selection - Inductive Load
Diode Current Rating > 1x Strike Current
Diode Break Down V oltage: $4 x$ Strike Voltag
12 Vdc or 24 Vdc Strike, Diode 1 N4002 (100V / 1A) Typical
Figure 5: RS-485 Sub-Panel Bus Termination
CABUNG: 1 twisted pair w/drain \& shied, 24 AWG, 120Ω impedance

The LP- 4502 has two RS- 485 subpanel buses which must be terminated and Jo \& J9 are termination jumpers heir respective Sub-Panel Bus
(see Two Wire RS-485 Wiring diagram for sub-panel wiring information)

Address	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
$\mathbf{0}$	Off	Off	Off	Off	Off	On	On	Off
$\mathbf{1}$	On	Off	Off	Off	Off	On	On	Off
$\mathbf{2}$	Off	On	Off	Off	Off	On	On	Off
$\mathbf{3}$	On	On	Off	Off	Off	On	On	Off
$\mathbf{4}$	Off	Off	On	Off	Off	On	On	Off
$\mathbf{5}$	On	Off	On	Off	Off	On	On	Off
$\mathbf{6}$	Off	On	On	Off	Off	On	On	Off
$\mathbf{7}$	On	On	On	Off	Off	On	On	Off
$\mathbf{8}$	Off	Off	Off	On	Off	On	On	Off
$\mathbf{9}$	On	Off	Off	On	Off	On	On	Off
$\mathbf{1 0}$	Off	On	Off	On	Off	On	On	Off
$\mathbf{1 1}$	On	On	Off	On	Off	On	On	Off
$\mathbf{1 2}$	Off	Off	On	On	Off	On	On	Off
$\mathbf{1 3}$	On	Off	On	On	Off	On	On	Off
$\mathbf{1 4}$	Off	On	On	On	Off	On	On	Off
$\mathbf{1 5}$	On	On	On	On	Off	On	On	Off
$\mathbf{1 6 ~}$	Off	Off	Off	Off	On	On	On	Off
$\mathbf{1 7 ~}$	On	Off	Off	Off	On	On	On	Off
$\mathbf{1 8}$	Off	On	Off	Off	On	On	On	Off
$\mathbf{1 9}$	On	On	Off	Off	On	On	On	Off
$\mathbf{2 0 ~}$	Off	Off	On	Off	On	On	On	Off
$\mathbf{2 1 ~}$	On	Off	On	Off	On	On	On	Off
$\mathbf{2 2 ~}$	Off	On	On	Off	On	On	On	Off
$\mathbf{2 3}$	On	On	On	Off	On	On	On	Off
$\mathbf{2 4 ~}$	Off	Off	Off	On	On	On	On	Off
$\mathbf{2 5}$	On	Off	Off	On	On	On	On	Off
$\mathbf{2 6 ~}$	Off	On	Off	On	On	On	On	Off
$\mathbf{2 7 ~}$	On	On	Off	On	On	On	On	Off
$\mathbf{2 8}$	Off	Off	On	On	On	On	On	Off
$\mathbf{2 9}$	On	Off	On	On	On	On	On	Off
$\mathbf{3 0 ~}$	Off	On	On	On	On	On	On	Off
On	Off							

Figure 1: Wiring Configurations
Oview

Figure 2: Reader Power Wiring
When wiring readers which require more than 50 mA of current, it is recommended to use the default wining method reflected in the drawing below. This wining method will work in all cases. Notice the +12 V lead (Red) of the reader is directly connected to the power supply. This ensures the full amount of current needed by the reader is being supplied for proper reader functionality. The Ground lead (Black) of the reader must reference the same ground as
the MR-50 and may be wired to the GND of the reader wining block.

In cases where the reader current draw is less than 50 mA of current, it is possible to connect the positive lead (Red) of the reader to the (+12 V) of the
reader wiring block.

Figure 3: Two Wire RS-485 Wiring

Reader Port Wiring

Reader Port Power VO=VIN
Readers requiring a different rating must be powered separately. The reader
ground must reference the MR-50 ground.

Figure 1 (Wiegand Reader Wiring)

		TB4
Wiegand Reader	Black \longrightarrow GND	\bigcirc
	Yellow \longrightarrow BzR	\bigcirc
	Brown \longrightarrow Led	\bigcirc
	White \longrightarrow CLKDD	\bigcirc
	Green \longrightarrow DAT/DO	\bigcirc
	Red - (See reader port power) \bullet vo	\bigcirc

Figure 2 (MR-DT Keypad Wiring)

Table 1: J2-Address Jumpers

Address	1	2	3	4	5	6	7	8
0	Off	Off	Off	Off	Off	On	On	Off

Figure 3: Output Wiring Configurations
Oview
Depen ding on your power source, use one of the two methods of transient clamping shown below to protect the relay contacts and to reduce electromagnetic interference (EMI emissions). Always protect against accidental overloads by wiring in an inline
fuse to the C (common) side of the relay as shown below. fuse to the C (common) side of the relay as shown below

AC Source

*MOV Selection - Inductive Load Clamp Voltage > $1.5 x$ Vac RMS
24Vac Strike, Panasonic ERZ-C07DK470 Typical

Figure 4: Input Wiring Configurations

$\stackrel{\times}{\stackrel{\times}{2}}$ \square Normally Closed

Normally Open

Figure 5: Two Wire RS-485 Wiring

Reader Port Wiring

TOC
Table 1: SIO Address

Address	S1-1	S1-2	S1-3	S1-4	S1-5
$\mathbf{0}$	OFF	OFF	OFF	OFF	OFF
$\mathbf{1}$	ON	OFF	OFF	OFF	OFF
$\mathbf{2}$	OFF	ON	OFF	OFF	OFF
$\mathbf{3}$	ON	ON	OFF	OFF	OFF
$\mathbf{4}$	OFF	OFF	ON	OFF	OFF
$\mathbf{5}$	ON	OFF	ON	OFF	OFF
$\mathbf{6}$	OFF	ON	ON	OFF	OFF
$\mathbf{7}$	ON	ON	ON	OFF	OFF
$\mathbf{8}$	OFF	OFF	OFF	ON	OFF
$\mathbf{9}$	ON	OFF	OFF	ON	OFF
$\mathbf{1 0}$	OFF	ON	OFF	ON	OFF
$\mathbf{1 1}$	ON	ON	OFF	ON	OFF
$\mathbf{1 2}$	OFF	OFF	ON	ON	OFF
$\mathbf{1 3}$	ON	OFF	ON	ON	OFF
$\mathbf{1 4}$	OFF	ON	ON	ON	OFF
$\mathbf{1 5}$	ON	ON	ON	ON	OFF

Address	S1-1	S1-2	S1-3	S1-4	S1-5
$\mathbf{1 6}$	OFF	OFF	OFF	OFF	ON
$\mathbf{1 7}$	ON	OFF	OFF	OFF	ON
$\mathbf{1 8}$	OFF	ON	OFF	OFF	ON
$\mathbf{1 9}$	ON	ON	OFF	OFF	ON
$\mathbf{2 0}$	OFF	OFF	ON	OFF	ON
$\mathbf{2 1}$	ON	OFF	ON	OFF	ON
$\mathbf{2 2}$	OFF	ON	ON	OFF	ON
$\mathbf{2 3}$	ON	ON	ON	OFF	ON
$\mathbf{2 4}$	OFF	OFF	OFF	ON	ON
$\mathbf{2 5}$	ON	OFF	OFF	ON	ON
$\mathbf{2 6}$	OFF	ON	OFF	ON	ON
$\mathbf{2 7}$	ON	ON	OFF	ON	ON
$\mathbf{2 8}$	OFF	OFF	ON	ON	ON
$\mathbf{2 9}$	ON	OFF	ON	ON	ON
$\mathbf{3 0}$	OFF	ON	ON	ON	ON
$\mathbf{3 1}$	ON	ON	ON	ON	ON

Table 2: Baud Rate

S1-6	S1-7	Baud Rate
ON *	ON *	$38,400 \mathrm{bps}$
OFF	ON	$19,200 \mathrm{bps}$
ON	OFF	$9,600 \mathrm{bps}$
OFF	OFF	$115,200 \mathrm{bps}$

*Access It! Universal.NET default value.

Figure 3: Output Wiring Options

Door lock mechanisms can generate feedback to the relay
circuit that can cause damage and premature failure of the
relay. For this reason, a diode must be used to protect the
relay. Wire should be of sufficient gauge to avo id voltage loss.

Diode Selection - Inductive Load Diode Current Rating $>1 \times$ Strike Current
Diode Break Down Voltage: 4 x Strike Voltage
12 Vdc or 24 Vdc Strike, Diode 1 N 4002 (100V / 1A) Typical

Figure 4: Input Wiring Options
CABUNG: 1 twisted pair per input, 30Ω maximum
$\stackrel{\times}{\underline{x}}$ 。 \square Normally Closed
$\stackrel{\times}{\bullet}$ \square Normally Open

Figure 5: Two Wire RS-485 Wiring

Figure 1: Reader Port 1

Figure 2: Reader Port 2

Figure 3: Output Wiring Options
Depen ding on your power source, use one of the two methods of transient clamping shown below to protect the relay contacts and to reduce electromagnetic interference (EMI emissions). Always protect ag ainst accidental overloads by wiring in an inline
fuse to the C (common) side of the relay as shown below.

*Diode Selection - Inductive Load
Diode Current Rating > $1 \times$ Strike Current Diode Break Down Voltage: $4 \times$ Strike Voltage 12 Vdc or 24 Vdc Strike, Diode 1 N 4002 (100V / 1A) Typical

*MOV Selection - Inductive Load Clamp Voltage > $1.5 \times$ Vac RMS 24 Vac Strike, Panasonic ERZ-C07DK470 Typical

Explanation 1: 10/100 Ethernet

Configuring Primary 10/100 Ethernet Host Channel

1. Set all S1 - Configuration DIP Switch DIPs OFF
2. Apply power to the MR-51E
3. Run Access It! Universal
4. From the File Menu, select Go|Main|Hardware
5. Click the plus sign (+) to expand the SCPs
6. Click the plus sign (+) to expand the SCP the MR-51E will be installed on
7. Select the SIOs branch, not the plus sign(+)
8. A list of all available SIOs appear in the pane to the right of the hardware tree
9. Edit the first uninstalled SIO from the right hand pane

General Tab
Model: MR-51E
Device Installed: \mathbf{X}
IP Address: <Enter IP Address to be assigned to MR-51E>
MAC Address: <MAC Address of MR-51E>
10. Click Save button

NOTE: The IP Address is downloaded to the EP controller, then automatically assigned to the MR-51E when

Explanation 2: S2-Reset Switch
Pressing the S2 - Reset Switch will cause the MR-51E to reset.

Figure 4: Mounting Information

Figure 5: Input Wiring Options
Non-Supervised

Address	1	2	3	4	5	6	7	8
0	Off	Off	Off	Off	Off	On	On	Off
1	On	Off	Off	Off	Off	On	On	Off
2	Off	On	Off	Off	Off	On	On	Off
3	On	On	Off	Off	Off	On	On	Off
4	Off	Off	On	Off	Off	On	On	Off
5	On	Off	On	Off	Off	On	On	Off
6	Off	On	On	Off	Off	On	On	Off
7	On	On	On	Off	Off	On	On	Off
8	Off	Off	Off	On	Off	On	On	Off
9	On	Off	Off	On	Off	On	On	Off
10	Off	On	Off	On	Off	On	On	Off
11	On	On	Off	On	Off	On	On	Off
12	Off	Off	On	On	Off	On	On	Off
13	On	Off	On	On	Off	On	On	Off
14	Off	On	On	On	Off	On	On	Off
15	On	On	On	On	Off	On	On	Off
16	Off	Off	Off	Off	On	On	On	Off
17	On	Off	Off	Off	On	On	On	Off
18	Off	On	Off	Off	On	On	On	Off
19	On	On	Off	Off	On	On	On	Off
20	Off	Off	On	Off	On	On	On	Off
21	On	Off	On	Off	On	On	On	Off
22	Off	On	On	Off	On	On	On	Off
23	On	On	On	Off	On	On	On	Off
24	Off	Off	Off	On	On	On	On	Off
25	On	Off	Off	On	On	On	On	Off
26	Off	On	Off	On	On	On	On	Off
27	On	On	Off	On	On	On	On	Off
28	Off	Off	On	On	On	On	On	Off
29	On	Off	On	On	On	On	On	Off
30	Off	On	On	On	On	On	On	Off
31	On	Off						

Figure 2: Reader Power Wiring

When wining readers which require more than 75 mA of current, it is recommended to use the default wining method reflected in the drawing below. This
 current needed by the reader is being supplied for proper reader fun
the MR-52 and may be wired to the GND of the reader wining block.

In cases where the reader current draw is less than 75 mA of current, it is possible to connect the positive lead (Red) of the reader to the (VO) of the reader wiring block. Note however, that J4 detemines the reader voltage output of 5 volts jumpered or 12 volts un-jumpered of terminal (VO). Also note
that when powering readers from the reader wiring block that $J 2$ may be set to REG for regulated power or UNREG for unregulated power.

Figure 3: Two Wire RS-485 Wiring
 bus, so Jx IS terminated. (see SCPquick reterenco shemet for specificic jumper middle of the bus, so J5 and J6 are

NOT terminated.
© 2021 RS2 Technologies. - Al rightis reserved.

Address	1	2	3	4	5	6	7	8
0	Off	Off	Off	Off	Off	On	On	Off
1	On	Off	Off	Off	Off	On	On	Off
2	Off	On	Off	Off	Off	On	On	Off
3	On	On	Off	Off	Off	On	On	Off
4	Off	Off	On	Off	Off	On	On	Off
5	On	Off	On	Off	Off	On	On	Off
6	Off	On	On	Off	Off	On	On	Off
7	On	On	On	Off	Off	On	On	Off
8	Off	Off	Off	On	Off	On	On	Off
9	On	Off	Off	On	Off	On	On	Off
10	Off	On	Off	On	Off	On	On	Off
11	On	On	Off	On	Off	On	On	Off
12	Off	Off	On	On	Off	On	On	Off
13	On	Off	On	On	Off	On	On	Off
14	Off	On	On	On	Off	On	On	Off
15	On	On	On	On	Off	On	On	Off
16	Off	Off	Off	Off	On	On	On	Off
17	On	Off	Off	Off	On	On	On	Off
18	Off	On	Off	Off	On	On	On	Off
19	On	On	Off	Off	On	On	On	Off
20	Off	Off	On	Off	On	On	On	Off
21	On	Off	On	Off	On	On	On	Off
22	Off	On	On	Off	On	On	On	Off
23	On	On	On	Off	On	On	On	Off
24	Off	Off	Off	On	On	On	On	Off
25	On	Off	Off	On	On	On	On	Off
26	Off	On	Off	On	On	On	On	Off
27	On	On	Off	On	On	On	On	Off
28	Off	Off	On	On	On	On	On	Off
29	On	Off	On	On	On	On	On	Off
30	Off	On	On	On	On	On	On	Off
31	On	Off						

Figure 3: Output Wiring Configurations
Oview

Depending on your power source, use one of the two methods of transient clamping shown below to protect the relay contacts and to reduce electromagnetic interference (EMI emissions). Always protect against accidental ove rloads by wiring in an inline fuse to the C (common) side of the relay as shown below.

AC Source

*MOV Selection - Inductive Load Clamp Voltage > $1.5 \times$ Vac RMS
24 Vac Strike, Panasonic ERZ-C07DK470 Typical

Figure 4: Input Wiring Configurations

$\stackrel{x}{x}$ \square
Normally Closed

Normally Open

Figure 5: Two Wire RS-485 Wiring

Door Contact 1 - N/C (Jumper if not used) See Figure 2
Exit Request 1 - N/O See Figure 2
Door Contact 2 - N/C (Jumper if not used) See Figure 2
Exit Request 2 - N/O See Figure 2
Auxiliary Input 5 - N/O See Figure 2
Auxiliary Input 6 - N/O See Figure 2
Auxiliary Input 7 - N/O See Figure 2
Auxiliary Input 8 - N/O See Figure 2
Tamper Input N/C (jumper if not used)
Power Fault N/C (jumper if not used)

J1 - Reader Power (300mA max per port)

PT Position - VO = VIN (12Vdc to $24 \mathrm{Vdc} \pm 10 \%$)

 If VIN is 12 Vdc , PT position MUST be used!12 V Position - VO $=12 \mathrm{Vdc} \pm 10 \%$ regulated Use 12 V position ONLY if VIN power is $>20 \mathrm{Vdc}$.

Readers requiring a different rating than listed above should be powered separately. The reader ground must reference the panel ground.

Two Wire RS-485 Bus

See Figure 3

Power (550 mA max plus readers

 CABUNG: 1 twisted pair, minimum 18 AWGVIN (Voltage In): Positive 12 to 24 Volts $\pm 10 \%$ DC VOUT (Voltage Out): Not used
GND (Ground): Input Voltage Return (-)

Figure 1

Wiegand Reader Example
CABUNG: 6-conductor, 18 AWG, 500 feet (150 m) max

Figure 2
OSDP / RS-485 Reader Example
CABUNG: 1 twisted pair 18 AWG A for power and 1 twisted
pair widrain \& shield, $24 \mathrm{AWG}, 120 \Omega$ impeedance,
2,000 feet (610 m) max for communication

> S1 - Configuration Switch - S1-1 thru S1-5: SIO Address (Table 1) Each SIO address mustbe unique. - S1-6 thru S1-7: Baud Rate (Table 2) - \quad S1-8: Require Encryption if ON

Door Strike 1

Normally Open Wiring: 5A@30Vdc resistive Normally Closed Wiring: 3A@30Vdc resistive See Figure 1

Auxiliary Output 2

Normally Open Wiring: 5A@30Vdc resistive Normally Closed Wiring: 3A@30Vdc resistive

$$
\text { See Figure } 1
$$

Door Strike 2

Normally Open Wiring: 5A@30Vdc resistive Normally Closed Wiring: 3A@30Vdc resistive

$$
\text { See Figure } 1
$$

Auxiliary Output 4

Normally Open Wiring: 5A@30Vdc resistive Normally Closed Wiring: 3A@30Vdc resistive

$$
\text { See Figure } 1
$$

Auxiliary Output 5

Normally Open Wiring: 5A@30Vdc resistive Normally Closed Wiring: 3A@30Vdc resistive

$$
\text { See Figure } 1
$$

Auxiliary Output 6

Normally Open Wiring: 5A@30Vdc resistive Normally Closed Wiring: 3A@30Vdc resistive See Figure 1

Address	S1-1	S1-2	S1-3	S1-4	S1-5	Address	S1-1	S1-2	S1-3	S1-4	S1-5
0	OFF	OFF	OFF	OFF	OFF	16	OFF	OFF	OFF	OFF	ON
1	ON	OFF	OFF	OFF	OFF	17	ON	OFF	OFF	OFF	ON
2	OFF	ON	OFF	OFF	OFF	18	OFF	ON	OFF	OFF	ON
3	ON	ON	OFF	OFF	OFF	19	ON	ON	OFF	OFF	ON
4	OFF	OFF	ON	OFF	OFF	20	OFF	OFF	ON	OFF	ON
5	ON	OFF	ON	OFF	OFF	21	ON	OFF	ON	OFF	ON
6	OFF	ON	ON	OFF	OFF	22	OFF	ON	ON	OFF	ON
7	ON	ON	ON	OFF	OFF	23	ON	ON	ON	OFF	ON
8	OFF	OFF	OFF	ON	OFF	24	OFF	OFF	OFF	ON	ON
9	ON	OFF	OFF	ON	OFF	25	ON	OFF	OFF	ON	ON
10	OFF	ON	OFF	ON	OFF	26	OFF	ON	OFF	ON	ON
11	ON	ON	OFF	ON	OFF	27	ON	ON	OFF	ON	ON
12	OFF	OFF	ON	ON	OFF	28	OFF	OFF	ON	ON	ON
13	ON	OFF	ON	ON	OFF	29	ON	OFF	ON	ON	ON
14	OFF	ON	ON	ON	OFF	30	OFF	ON	ON	ON	ON
15	ON	ON	ON	ON	OFF	31	ON	ON	ON	ON	ON

Table 2: Baud Rate

S1-6	S1-7	Baud Rate
ON	ON	$38,400 \mathrm{bps}^{\dagger}$
OFF	ON	$19,200 \mathrm{bps}^{*}$
ON	OFF	$9,600 \mathrm{bps}^{*}$
OFF	OFF	$115,200 \mathrm{bps}^{*}$
Access It! Universal. NeT default value.		

${ }^{*}$ Not evaluated by UL

Figure 1: Output Wiring Options

Door lock mechanisms can gener ate feedback to the relay
circuit that can cause damage and premature failure of the circuit that can cause damage and premature failure of the
relay. For this reason, a diode must be used to protect the relay. Wire should be of sufficient gauge to avo id voltage loss.

Diode Selection - Inductive Load Diode Current Rating > $1 x$ Strike Current
Diode Break Down Voltage: $4 x$ Strike Voltage
12 Vdc or 24 Vdc Strike, Diode 1 N4002 ($100 \mathrm{~V} / \mathrm{1A}$) Typical

Figure 2: Input Wiring Options
CABUNG: 1 twisted pair per input, 30Ω maximum
$\stackrel{\times}{\underline{\bullet}} \stackrel{.}{ }$
$\stackrel{\times}{\underline{\bullet}}$ \square Normally Open

Normally Closed Supervised

Normally Open Supervised

Figure 3: Two Wire RS-485 Wiring

Normal LED Function

RS2 Technologies - 400 Fisher Street, Suie G- Munster. IN 46321-(877) 682-3532-Fax (219) 836-9102

Explanation 1: 10/100 Ethernet
Configuring Primary 10/100 Ethernet Host Channel For A Static IP Address

1. Set S1-Configuration DIP Switch DIP 2 ON
2. Set S1-Configuration DIP Switch DIPs 1, 3 \& 4 OFF
3. Apply power to the MR-62E
4. Manually configure a computer to 192.168.0.100
5. Using a crossover cable, connect computer to MR-62E
6. Open a web browser and go to 192.168.0.251
7. Set S1 - Configuration DIP Switch DIP 1 ON
8. Click on 'Click Here to Login'
9. Click on 'Continue to this website (not recommended).'
10. Enter a Username of admin
11. Enter a Password of password
12. Click 'Network' from the left hand menu
13. Select 'Use Static IP configuration:'

IP Address: <Set accordingly>
Subnet Mask: <Set accordingly>
Default Gateway: <Set acc ordingly>
Select DHCP if needed.
14. Click 'Accept'
15. Click 'Apply Setting' from the left hand menu
16. Click 'Apply and Reboot' button
17. Wait 60 seconds for MR-62E to reboot
18. Remove powe from the MR-62E
19. Set all S1 - Configuration DIP Switch DIPs OFF
20. Remove crossover cable and connect to network
21. Apply power to the MR-62E
22. Run Access It! Universal.NET
23. Navigate to the Hardware section
24. Click the arrow to expand the SCPs
25. Click the arrow to expand the SCP the MR-62E will be installed under
26. Select SIOs

A list of all available SIOs appear in the pane to the right of the hardware tree.
27. Edit the first uninstalled SIO from the right hand pane

General Tab
Model: MR-62E
Device Installed: X
IP Address: <Enter IP Address to be assigned to MR-62E>
MAC Address: <MAC Address of MR-62E>
28. Click Save button

Bulk Erasing MR-62E

1. Set S1-Configuration DIP Switch DIPs $1 \& 2$ ON
2. Set S1 - Configuration DIP Switch DIPs $3 \& 4$ OFF
3. Apply power to the MR-62E

LEDs 1 \& 2 and LEDs 3 \& 4 flash alternately at a .5 second rate.
4. Within 10 seconds, switch S1-Configuration DIP Switch DIP 1 OFF LEDs 1 \& 2 alternately flash at a 0.5 second rate while memory is erased WARNING! DO NOT CYCLE POWER
Erasing memory takes approximately 60 seconds to complete
Once memory is erased, LED 1 will be on for ~ 3 seconds, then the MR-62E reboots.
5. The MR-62E is now ready to be configured as needed

RS-485: 1 twisted pair wdrain \& shield, $24 \mathrm{AWG}, 120 \Omega$ impedance, 4,000 feet $(1220 \mathrm{~m})$ max
Power: 1 pair 18 AWG (cable type and gauge determined by length and voltagécurrent requir
Power: 1 pair 18 AWG (cable type and gauge determined by length and voltagelcurrent requirements, local power source may be required)
J4
J4 is only ynstalled ifthe MR-62e is at
one end of the communicaion bus. DV one end of the communicaion bus.

Figure 2: Input Wiring Options
CABUNG: 1 twisted pair per input, 30Ω maximum

Figure 3: Output Wiring Options

Door lock mechanisms can generate feedback to the relay
circuit that can cause da mage and premature failure of the
relay. For this reason, a diode must be used to protect the
relay. Wire should be of sufficient gauge to avo id voltage loss.

*Diode Selection - Inductive Load Diode Current Rating > $1 \times$ Strike Current Diode Break Down Voltage: 4x Strike Voltage 12 Vdc or 24 Vdc Strike, Diode 1 N 4002 (100V / 1A) Typical

Figure 4: Mounting Information

TOC Table 1: S1 - Address Dip Switch

Address	1	2	3	4	5	6	7	8
0	Off	Off	Off	Off	Off	On	On	Off
1	On	Off	Off	Off	Off	On	On	Off
2	Off	On	Off	Off	Off	On	On	Off
3	On	On	Off	Off	Off	On	On	Off
4	Off	Off	On	Off	Off	On	On	Off
5	On	Off	On	Off	Off	On	On	Off
6	Off	On	On	Off	Off	On	On	Off
7	On	On	On	Off	Off	On	On	Off
8	Off	Off	Off	On	Off	On	On	Off
9	On	Off	Off	On	Off	On	On	Off
10	Off	On	Off	On	Off	On	On	Off
11	On	On	Off	On	Off	On	On	Off
12	Off	Off	On	On	Off	On	On	Off
13	On	Off	On	On	Off	On	On	Off
14	Off	On	On	On	Off	On	On	Off
15	On	On	On	On	Off	On	On	Off
16	Off	Off	Off	Off	On	On	On	Off
17	On	Off	Off	Off	On	On	On	Off
18	Off	On	Off	Off	On	On	On	Off
19	On	On	Off	Off	On	On	On	Off
20	Off	Off	On	Off	On	On	On	Off
21	On	Off	On	Off	On	On	On	Off
22	Off	On	On	Off	On	On	On	Off
23	On	On	On	Off	On	On	On	Off
24	Off	Off	Off	On	On	On	On	Off
25	On	Off	Off	On	On	On	On	Off
26	Off	On	Off	On	On	On	On	Off
27	On	On	Off	On	On	On	On	Off
28	Off	Off	On	On	On	On	On	Off
29	On	Off	On	On	On	On	On	Off
30	Off	On	On	On	On	On	On	Off
31	On	Off						

Figure 1: Wiring Configurations

Normally Closed Supervised

Normally Opened Supervised

1K Ohm Resistors P/N: RES-1K32
(Quantity of 32 supplied with each MR-16IN)

Figure 2: Two Wire RS-485 Wiring

TOC Table 1: S1 - Address Dip Switch

Address	1	2	3	4	5	6	7	8
0	Off	Off	Off	Off	Off	On	On	Off
1	On	Off	Off	Off	Off	On	On	Off
2	Off	On	Off	Off	Off	On	On	Off
3	On	On	Off	Off	Off	On	On	Off
4	Off	Off	On	Off	Off	On	On	Off
5	On	Off	On	Off	Off	On	On	Off
6	Off	On	On	Off	Off	On	On	Off
7	On	On	On	Off	Off	On	On	Off
8	Off	Off	Off	On	Off	On	On	Off
9	On	Off	Off	On	Off	On	On	Off
10	Off	On	Off	On	Off	On	On	Off
11	On	On	Off	On	Off	On	On	Off
12	Off	Off	On	On	Off	On	On	Off
13	On	Off	On	On	Off	On	On	Off
14	Off	On	On	On	Off	On	On	Off
15	On	On	On	On	Off	On	On	Off
16	Off	Off	Off	Off	On	On	On	Off
17	On	Off	Off	Off	On	On	On	Off
18	Off	On	Off	Off	On	On	On	Off
19	On	On	Off	Off	On	On	On	Off
20	Off	Off	On	Off	On	On	On	Off
21	On	Off	On	Off	On	On	On	Off
22	Off	On	On	Off	On	On	On	Off
23	On	On	On	Off	On	On	On	Off
24	Off	Off	Off	On	On	On	On	Off
25	On	Off	Off	On	On	On	On	Off
26	Off	On	Off	On	On	On	On	Off
27	On	On	Off	On	On	On	On	Off
28	Off	Off	On	On	On	On	On	Off
29	On	Off	On	On	On	On	On	Off
30	Off	On	On	On	On	On	On	Off
31	On	Off						

Figure 1: Output Wiring Configurations
Oview
Depending on your power source, use one of the two methods of transient clamping shown below to protect the relay contacts and to reduce electromagnetic interference (EMI emissions). Always protect against accidental ove rloads by wiring in an inline fuse to the C (common) side of the relay as shown below

AC Source

*MOV Selection - Inductive Load
Clamp Voltage > $1.5 \times$ Vac RMS
24Vac Strike, Pan asonic ERZ-C07DK470 Typical

Figure 2: Input Wiring Configurations

Figure 3: Two Wire RS-485 Wiring

The SCP is at the beginning of the bus, SO SC S IS IS terminated reference for specifici jimpe

T

Total Maximum Wire Length of 4,000'
(1 twisted pair with shield, 24 AWG)
 of the bus, so $\mathrm{J1}$ is NOT terminated.
© 2021 RS2 Technologies. - All rights reserved.

MR-16IN (2)

The MR-16IN (2) is at the end of the bus, so J1 IS terminated.

TOC
Table 1: SIO Address

Address	S1-1	S1-2	S1-3	S1-4	S1-5
$\mathbf{0}$	OFF	OFF	OFF	OFF	OFF
$\mathbf{1}$	ON	OFF	OFF	OFF	OFF
$\mathbf{2}$	OFF	ON	OFF	OFF	OFF
$\mathbf{3}$	ON	ON	OFF	OFF	OFF
$\mathbf{4}$	OFF	OFF	ON	OFF	OFF
$\mathbf{5}$	ON	OFF	ON	OFF	OFF
$\mathbf{6}$	OFF	ON	ON	OFF	OFF
$\mathbf{7}$	ON	ON	ON	OFF	OFF
$\mathbf{8}$	OFF	OFF	OFF	ON	OFF
$\mathbf{9}$	ON	OFF	OFF	ON	OFF
$\mathbf{1 0}$	OFF	ON	OFF	ON	OFF
$\mathbf{1 1}$	ON	ON	OFF	ON	OFF
$\mathbf{1 2}$	OFF	OFF	ON	ON	OFF
$\mathbf{1 3}$	ON	OFF	ON	ON	OFF
$\mathbf{1 4}$	OFF	ON	ON	ON	OFF
$\mathbf{1 5}$	ON	ON	ON	ON	OFF

Address	S1-1	S1-2	S1-3	S1-4	S1-5
$\mathbf{1 6}$	OFF	OFF	OFF	OFF	ON
$\mathbf{1 7}$	ON	OFF	OFF	OFF	ON
$\mathbf{1 8}$	OFF	ON	OFF	OFF	ON
$\mathbf{1 9}$	ON	ON	OFF	OFF	ON
$\mathbf{2 0}$	OFF	OFF	ON	OFF	ON
$\mathbf{2 1}$	ON	OFF	ON	OFF	ON
$\mathbf{2 2}$	OFF	ON	ON	OFF	ON
$\mathbf{2 3}$	ON	ON	ON	OFF	ON
$\mathbf{2 4}$	OFF	OFF	OFF	ON	ON
$\mathbf{2 5}$	ON	OFF	OFF	ON	ON
$\mathbf{2 6}$	OFF	ON	OFF	ON	ON
$\mathbf{2 7}$	ON	ON	OFF	ON	ON
$\mathbf{2 8}$	OFF	OFF	ON	ON	ON
$\mathbf{2 9}$	ON	OFF	ON	ON	ON
$\mathbf{3 0}$	OFF	ON	ON	ON	ON
$\mathbf{3 1}$	ON	ON	ON	ON	ON

Table 2: Baud Rate

S1-6	S1-7	Baud Rate
ON	ON	$38,400 \mathrm{bps}^{\dagger}$
OFF	ON	$19,200 \mathrm{bps}^{*}$
ON	OFF	$9,600 \mathrm{bps}^{*}$
OFF	OFF	$115,200 \mathrm{bps}^{*}$
${ }^{\dagger}$ Access It! Universal.NET default value.		

${ }^{*}$ Not evaluated by UL

Figure 1: Output Wiring Options

Door lock mechanisms can generate feedback to the relay
circuit that can cause damage and premature failure of the
relay. For this reason, a diode must be used to protect the relay. Wire should be of sufficient gauge to avo id voltage loss.

Diode Selection - Inductive Load
Diode Current Rating > $1 \times$ Strike Current
Diode Break Down Voltage: $4 x$ Strike Voltage
12 Vdc or 24 Vdc Strike, Diode 1 N 4002 (100V / 1A) Typical

Figure 2: Input Wiring Options

$$
\text { CABUNG: } 1 \text { twisted pair per input, } 30 \Omega \text { maximum }
$$

Figure 3: Two Wire RS-485 Wiring

CABUNG: 1 twisted pair w/drain \& shield, 24 AWG, 120Ω impedance

MR-160UT Series 1 Quick Reference

TOC Table 1: S1-Address Dip Switch

Address	1	2	3	4	5	6	7	8
0	Off	Off	Off	Off	Off	On	On	Off
1	On	Off	Off	Off	Off	On	On	Off
2	Off	On	Off	Off	Off	On	On	Off
3	On	On	Off	Off	Off	On	On	Off
4	Off	Off	On	Off	Off	On	On	Off
5	On	Off	On	Off	Off	On	On	Off
6	Off	On	On	Off	Off	On	On	Off
7	On	On	On	Off	Off	On	On	Off
8	Off	Off	Off	On	Off	On	On	Off
9	On	Off	Off	On	Off	On	On	Off
10	Off	On	Off	On	Off	On	On	Off
11	On	On	Off	On	Off	On	On	Off
12	Off	Off	On	On	Off	On	On	Off
13	On	Off	On	On	Off	On	On	Off
14	Off	On	On	On	Off	On	On	Off
15	On	On	On	On	Off	On	On	Off
16	Off	Off	Off	Off	On	On	On	Off
17	On	Off	Off	Off	On	On	On	Off
18	Off	On	Off	Off	On	On	On	Off
19	On	On	Off	Off	On	On	On	Off
20	Off	Off	On	Off	On	On	On	Off
21	On	Off	On	Off	On	On	On	Off
22	Off	On	On	Off	On	On	On	Off
23	On	On	On	Off	On	On	On	Off
24	Off	Off	Off	On	On	On	On	Off
25	On	Off	Off	On	On	On	On	Off
26	Off	On	Off	On	On	On	On	Off
27	On	On	Off	On	On	On	On	Off
28	Off	Off	On	On	On	On	On	Off
29	On	Off	On	On	On	On	On	Off
30	Off	On	On	On	On	On	On	Off
31	On	Off						

Figure 1: Output Wiring

Depending on your power source, use one of the two methods of transient clamping shown below to protect the relay contacts and to reduce electromagnetic interference (EMI emissions). Always protect against accidental overloads by wiring an in-line fuse to the C (common) side of the relay electromagnetic
as shown below.

DC Source

*Diode Selection - Inductive Load
Diode Current Rating $>1 \times$ Strike Current
Diode Break Down Voltage: $4 \times$ Strike Voltage
12Vdc or 24 Vdc Strike, Diode 1 N 4002 (100V / 1A) Typical

*MOV Selection - Inductive Load
Clamp Voltage > $1.5 \times$ Vac RMS
24Vac Strike, Panasonic ERZ-C07DK470 Typical

Figure 2: Two Wire RS-485 Wiring

Auxiliary Output 9

(5A@28Vdc resistive - Figure 1)

Auxiliary Output 10

(5A@28Vdc resistive - Figure 1)

Auxiliary Output 11

(5A@28Vdc resistive - Figure 1)

Auxiliary Output 12

 (5A@28Vdc resistive - Figure 1)```
Auxiliary Output 13 (5A@28Vdc resistive - Figure 1)
```


## Auxiliary Output 14

 (5A@28Vdc resistive - Figure 1)```
Auxiliary Output 15 (5A@28Vdc resistive - Figure 1)
```


Auxiliary Output 16

```
(5A@28Vdc resistive - Figure 1)
```


Normal LED Function

```
- LED A = Power ( \(\sim 1\) pulse/second)
- LED B = SCP Communication (Rapid pulse)
- LED CT = Tamper (ON = Active)
- LED BA = Power Fault (ON = Active)
```

S1-Address Dip Switch (Table 1)

- Start at address 0
- Each SIO address in the bus must be unique.
- Set switches prior to powering up.

Mechanical Specifications	
- Dimensions	$6.0^{\prime \prime}(152.4 \mathrm{~mm}) \mathrm{W} \times 8.0^{\prime \prime}(203.2 \mathrm{~mm}) \mathrm{L}$
- Temperature	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, storage
	$0^{\circ} \mathrm{C}$ to $+49^{\circ} \mathrm{C}$, ope rating
- Humidity	0% to 85% RHNC

TOC Table 1: S1 - Address Dip Switch

Address	1	2	3	4	5	6	7	8
0	Off	Off	Off	Off	Off	On	On	Off
1	On	Off	Off	Off	Off	On	On	Off
2	Off	On	Off	Off	Off	On	On	Off
3	On	On	Off	Off	Off	On	On	Off
4	Off	Off	On	Off	Off	On	On	Off
5	On	Off	On	Off	Off	On	On	Off
6	Off	On	On	Off	Off	On	On	Off
7	On	On	On	Off	Off	On	On	Off
8	Off	Off	Off	On	Off	On	On	Off
9	On	Off	Off	On	Off	On	On	Off
10	Off	On	Off	On	Off	On	On	Off
11	On	On	Off	On	Off	On	On	Off
12	Off	Off	On	On	Off	On	On	Off
13	On	Off	On	On	Off	On	On	Off
14	Off	On	On	On	Off	On	On	Off
15	On	On	On	On	Off	On	On	Off
16	Off	Off	Off	Off	On	On	On	Off
17	On	Off	Off	Off	On	On	On	Off
18	Off	On	Off	Off	On	On	On	Off
19	On	On	Off	Off	On	On	On	Off
20	Off	Off	On	Off	On	On	On	Off
21	On	Off	On	Off	On	On	On	Off
22	Off	On	On	Off	On	On	On	Off
23	On	On	On	Off	On	On	On	Off
24	Off	Off	Off	On	On	On	On	Off
25	On	Off	Off	On	On	On	On	Off
26	Off	On	Off	On	On	On	On	Off
27	On	On	Off	On	On	On	On	Off
28	Off	Off	On	On	On	On	On	Off
29	On	Off	On	On	On	On	On	Off
30	Off	On	On	On	On	On	On	Off
31	On	Off						

Figure 1: Output Wiring Configurations
Depending on your power source, use one of the two methods of transient clamping shown below to protect the relay contacts and to reduce electromagnetic interference (EMI emissions). Always protect against accidental overloads by wiring in an inline and to reduce electromagnetic interference (comon) side of the relay as shown below.
fuse

Auxiliary Output

Normally Open Wiring: 5A@30Vdc resistive Normally Closed Wiring: 3A@30Vdc resistive See Figure 1

Auxiliary Output 2

Normally Open Wiring: 5A@30Vdc resistive Normally Closed Wiring: 3A@30Vdc resistive See Figure 1

Tamper Input N / C (jumper if not used)
Power Fault
N / C (jumper if not used)

Two Wire RS-485 Bus See Figure 2
Power (1100mA max) CABUNG: 1 twisted pair, minimum 18 AWG VIN (Voltage In): Positive 12 to 24 Volts $\pm 10 \%$ DC VOUT (Voltage Out): Not used GND (Ground): Input Voltage Return (-)$+$

Auxiliary Output 9

Normally Open Wiring: 5A@30Vdc resistive Normally Closed Wiring: 3A@30Vdc resistive See Figure 1

Auxiliary Output 10

Normally Open Wiring: 5A@30Vdc resistive Normally Closed Wiring. 3A@30Vdc resistive

$$
\text { See Figure } 1
$$

Auxiliary Output 11

Normally Open Wiring: 5A@30Vdc resistive Normally Closed Wiring: 3A@30Vdc resistive

$$
\text { See Figure } 1
$$

Auxiliary Output 12

Normally Open Wiring: 5A@30Vdc resistive Normally Closed Wiring. $3 \mathrm{~A} @ 30 \mathrm{Vdc}$ resistive

$$
\text { See Figure } 1
$$

Auxiliary Output 13

Normally Open Wiring: 5A@30Vdc resistive Normally Closed Wiring. $3 \mathrm{~A} @ 30 \mathrm{Vdc}$ resistive

$$
\text { See Figure } 1
$$

Auxiliary Output 14

Normally Open Wiring: 5A@30Vdc resistive Normally Closed Wiring: 3A@30Vdc resistive

$$
\text { See Figure } 1
$$

Auxiliary Output 15

Normally Open Wiring: 5A@30Vdc resistive Normally Closed Wiring. 3 A@ 30 Vdc resistive

$$
\text { See Figure } 1
$$

Auxiliary Output 16

Normally Open Wiring: 5A@30Vdc resistive Normally Closed Wiring: 3A@30Vdc resistive See Figure 1

Address	S1-1	S1-2	S1-3	S1-4	S1-5	Address	S1-1	S1-2	S1-3	S1-4	S1-5
0	OFF	OFF	OFF	OFF	OFF	16	OFF	OFF	OFF	OFF	ON
1	ON	OFF	OFF	OFF	OFF	17	ON	OFF	OFF	OFF	ON
2	OFF	ON	OFF	OFF	OFF	18	OFF	ON	OFF	OFF	ON
3	ON	ON	OFF	OFF	OFF	19	ON	ON	OFF	OFF	ON
4	OFF	OFF	ON	OFF	OFF	20	OFF	OFF	ON	OFF	ON
5	ON	OFF	ON	OFF	OFF	21	ON	OFF	ON	OFF	ON
6	OFF	ON	ON	OFF	OFF	22	OFF	ON	ON	OFF	ON
7	ON	ON	ON	OFF	OFF	23	ON	ON	ON	OFF	ON
8	OFF	OFF	OFF	ON	OFF	24	OFF	OFF	OFF	ON	ON
9	ON	OFF	OFF	ON	OFF	25	ON	OFF	OFF	ON	ON
10	OFF	ON	OFF	ON	OFF	26	OFF	ON	OFF	ON	ON
11	ON	ON	OFF	ON	OFF	27	ON	ON	OFF	ON	ON
12	OFF	OFF	ON	ON	OFF	28	OFF	OFF	ON	ON	ON
13	ON	OFF	ON	ON	OFF	29	ON	OFF	ON	ON	ON
14	OFF	ON	ON	ON	OFF	30	OFF	ON	ON	ON	ON
15	ON	ON	ON	ON	OFF	31	ON	ON	ON	ON	ON

Table 2: Baud Rate

S1-6	S1-7	Baud Rate
ON	ON	$38,400 \mathrm{bps}^{\dagger}$
OFF	ON	$19,200 \mathrm{bps}^{*}$
ON	OFF	$9,600 \mathrm{bps}^{*}$
OFF	OFF	$115,200 \mathrm{bps}^{*}$

sitt Universal.NET defaut
${ }^{\text {NNot evaluated by }}$ UL
Figure 1: Output Wiring Options

> Door lock mechanisms can gener ate feedback to the relay circuit that can cause damage and premature failure of the relay. For this reason, a diode must be used to protect the relay. Wire should be of sufficient gauge to avoid voltage loss.

Diode Selection - Inductive Load
Diode Current Rating > $1 \times$ Strike Cu rrent
12Vdc or 24Vdc Strike, Diode 1N4002 (100V / 1A) Typical

Figure 2: Two Wire RS-485 Wiring

CABUNG: 1 twisted pair wdrain \& shield, $24 \mathrm{AWG}, 120 \Omega$ impedance

MR16OUT-S3s (1) and (2) are in the middle of the bus, so J1 is NOT terminated.

MR16OUT-S3 (3)

The MR16OUT-S3 (3) is at the end of the bus, so J3 IS terminated.

Figure 1: Port 1 RS-485 SCP Bus Wiring

Figure 2: Port x RS-485 Sub-Panel Bus Wiring

Jumpers	Setting	Configuration
$\begin{aligned} & \mathrm{J} 1-\mathrm{J} 9 \\ & \text { (RX Data) } \end{aligned}$	Top	Port RX is enabled (default)
	Bottom	Port RX is disabled
$\begin{gathered} \text { J10 - J18 } \\ \text { (Port Termination) } \end{gathered}$	On	RS-485 Termination is on
	Off	RS-485 Termination is off
$\begin{aligned} & \text { J19 - J20 } \\ & \text { (Baud Rate) } \end{aligned}$	Top	9,600 Kbps
	Center	115,200 Kbps* (recommended)
	Bottom	38,400 Kbps
	Off	230,400 Kbps
$\begin{gathered} \text { J21 } \\ \text { (Host Port Mode) } \end{gathered}$	Right	Host port is RS-232**
	Left	Host port is RS-485

It is recommended to use $115,200 \mathrm{Kbps}$ baud rate (J19-J20) even when
communicating to SIO devices at $38,400 \mathrm{Kbps}$.
**J18 jumpers must be off for RS-232 mode.

Figure 1: Host Port RS-485 SCP Bus Wiring and Termination

Figure 2: Port x RS-485 Sub-Panel Bus Wiring and Termination
 Jx is NOT terminated
© 2021 RS2 Technologies. - All rights reserved.

[^0]: Pressing the S2 - Reset Switch will cause the EP-2500 to reboot
 This process will NOT erase the system configuration and cardh older databases

[^1]: RS2 Technologies - 400 Fisher Street, Suiee G-Munster, IN 46321-(87T) 682-3532-Fax (219) 836-9102

